Ensemble Models in Machine Learning:

Nischal HP (~nischal)




Ensemble models help us exploit the power of computing. Ensemble methods aren't new. They form the basis for some extremely powerful machine learning algorithms like random forests and gradient boosting machines. The key point about ensemble is that consensus from diverse models are more reliable than a single source. This poster will showcase how we can combine model outputs from various base models(logistic regression, support vector machines, decision trees, neural networks, etc) to create a stronger/better model output.

The primary goal of the poster is to answer the following questions: 1) Why ensembles produce better output?

2) How ensembles produce better output?

3) When data scales, what's the impact? What are the trade-offs to consider?

4) Can ensemble models eliminate expert domain knowledge?

5) What are the various strategies to create ensemble models?


Basic knowledge on machine learning and usage of python libraries like sklearn and pandas.

Content URLs:

Power of Ensembles Poster Deck - https://speakerdeck.com/nischalhp/power-of-ensembles

Speaker Info:

Bargava Subramanian is a Senior Data Scientist at Cisco Systems, India. He has a Masters in Statistics from University of Maryland, College Park, USA. He is a data geek and an ardent NBA follower. On twitter, he can be reached @bargava

Nischal HP is a Data Engineer at Redmart, India. He has a Masters in Computer Science from BITS, Pilani, India. He lives on music, ardent traveler and a mad soccer fan. On twitter, he can be reached @nischalhp

Speaker Links:

Bargava - https://speakerdeck.com/bargava

Nischal - https://speakerdeck.com/nischalhp

Section: Data Visualization and Analytics
Type: poster session
Target Audience: Intermediate
Last Updated:

Thanks for submitting. Can you please attach the link of the poster for the talk?

chandan kumar (~chandan2)

Hello Chandan,

I have added the poster deck.

Nischal HP (~nischal)

Please assemble add the slides in a single poster for example check here: https://drive.google.com/file/d/0B3WeDMkqc0DoUFM3elJwV2F0cEU/view?usp=sharing

chandan kumar (~chandan2)
The comment is marked as spam.


Gathering models enable us to misuse the intensity of registering. Outfit techniques aren't new. They frame the reason for some to a great degree powerful machine learning algorithms like arbitrary woods and slope boosting machines. The key point about group is that accord from various models are more dependable than a solitary source law essay writer uk


A machine learning framework could be prepared on email messages to figure out how to recognize spam and non-spam messages and the center of machine learning manages portrayal and speculation Cheap Essay Help a more formal definition is that a PC program is said to gain for a fact E concerning some class of undertakings .

Anna Mathew (~anna20)

Login to add a new comment.