Developing a match-making algorithm between customers and Go-Jek products!

Gunjan Dewan (~gunjan30)




20+ products. Millions of active customers. Insane amount of data and complex domain. Come join me in this talk to know the journey we at Gojek took to predict which of our products a user is most likely to use next.

A major problem we faced, as a company, was targeting our customers with promos and vouchers that were relevant to them. We developed a generalized model that takes into account the transaction history of users and gives a ranked list of our services that they are most likely to use next. From here on, we are able to determine the vouchers that we can target these customers with.

In this talk, I will be talking about our process while developing the model, the challenges we faced during the time, how we used PySpark to tackle these challenges and the impact it had on our conversion rates.

Content URLs:

Speaker Info:

Gunjan has been working as a Data Scientist for 3 years and has a background in Mathematics. Currently, she is working with the Fraud Team in the Gopay (Gojek) Data Science team.

She can talk about statistical models with you all day long and can’t help but notice patterns everywhere in her life. Along with her day job, she also mentors aspiring young data scientists.

Id: 1717
Section: Data Science, Machine Learning and AI
Type: Talks
Target Audience: Beginner
Last Updated: