

Wikipedia,
Dead Authors,
Naive Bayes

& Python

Outline

 Dead Authors : The Problem
 Wikipedia : The Resource
 Naive Bayes : The Solution
 Python : The Medium

 NLTK
 Scikits.learn

Authors, Books & Copyrights

Authors write books.
Books are published.
Authors earn royalty.

Authors hold copyright of their works
which prevents unauthorized use.

As time goes by..

Then one day
authors die...

Image from: http://www.flickr.com/photos/adamcrowe/4071096483/

http://www.flickr.com/photos/adamcrowe/4071096483/

The copyright clock

Once they die,
a clock starts

ticking!

Image from: http://www.flickr.com/photos/31332713@N04/3086719615/

http://www.flickr.com/photos/31332713@N04/3086719615/

After 60 years..

60 years after
the death of an
author, his
works enter the
public domain.

Image from: http://www.flickr.com/photos/magdav/5399905776/

http://www.flickr.com/photos/magdav/5399905776/

What does that mean?

Image from: http://www.flickr.com/photos/-bast-/349497988/

http://www.flickr.com/photos/-bast-/349497988/

Public Domain works

This means that anyone is free to
 Translate them
 Digitize them
 Record Audio books
 Create derivative works
 Publish cheaper editions
 Anything else you can think of!

Mahatma Gandhi

 My Experiments with
Truths (Gujarati
version)

 Hind Swaraj

Rabindranath Tagore

 Geetanjali
 Autobiography (My

Reminiscences)
 Gora

Munshi Premchand

 Godan
 Nirmala
 Other novels and

stories

Sarojini Naidu

 Poetess
 The Golden

Threshold

Jai Shankar Prasad

 Kamayani
 Wrote many

historical plays

Project Gutenberg

Project Gutenberg

 Project Gutenberg (PG) is a big repository of
digitized out of copyright books.

(http://www.gutenberg.org/)
 No such resource exists for India.
 PG follows US copyright policy => only books

published before 1923 can be added.
 In India, if the author died before 1950, his

works are in public domain.

http://www.gutenberg.org/

But why should we,
as hackers and geeks,

care?

Why?

Hackers like to fix things that are
broken!

Reasons

Reasons

Large datasets are
the necessary
ingredients for

building Machine
Learning based

NLP tools

OCR

Transliteration

Machine
Translation

Spell
Checkrs Information

Retrieval

Hackers love free things!

Reasons

Building an Indian PG

 First step is to identify the Indian authors who
are out of copyright.

 But how do we find out when did an author
die?

 There are websites that maintain author lists
by year of death but coverage of Indian
authors is low

(http://www.authorandbookinfo.com/)
 So what do we do?

http://www.authorandbookinfo.com/

Wikipedia!

Wikipedia Solution

WP has a
category for

Indian Writers!

WP has categories
by the death

years!

Voila! we can just look at pages
belonging to both the categories!

But..

 WP categories are not comprehensive. Many
author pages are not tagged.

 Also, we are looking for everyone who wrote a
book. Even if he may not be a full time writer.

 So gleaning all the yearwise death categories is
required.

Wikipedia Solution cont

 Some stats
 Typically 1800-2000 entries for each year
 Around 25-30 Indians
 Around 10-12 Indian authors

 Also WP is a work in progress. Information is
continually updated.

 So we may want to look again every few
months

In search of better solution

 This is a time consuming, tedious and hence an
error prone task for humans.

 Can we do something better?

Being Naive!

Aren't we Naive?

 This is a classic document classification
problem.

 Given all the pages listed in <year>_deaths
category, classify them as Indian authors or
not.

Document Classification

 Document classification and text classification
are well studied problems.

 Naive Bayes (NB) is a simple Machine
Learning Model that is known to perform
nicely on this problem.

Naive Bayes : An Intro

<< Interactive >>

NB: Continued

 The ”Naive” in NB refers to the assumption
that all the features being used are
independent

 In real life datasets, not easy to find completely
independent features
 Words in a document are not independent of each

other!

 NB works well even when the features are not
independent.

Python
One ring to bind them all

Image from: http://www.flickr.com/photos/thecaucas/2232897539/

http://www.flickr.com/photos/thecaucas/2232897539/

Overview of supervised learning

Pre-processing
Feature

Extraction

Training

Classification

Labeled Data

Model

Feature
Selection

Unlabeled Data

Features

Yes

No

Preprocessing

 Input text often needs cleaning before feature
extraction
 Stripping out markup, Tokenization, Decoding

entities

 Regular expressions are your friends.
 Build a library of functions each doing exactly

one transformation.
 Allows for quickly putting together different

preprocessing schemes and evaluating them.

Feature Extraction

 Typical features employed in NLP
 Words and phrases (Unigram, bi-gram)
 Part of speech tags
 Dictionary Features. Ex: if a word is present in a list

of place names

 Features need to be numerical.
 You can either collect counts or have a boolean

feature indicating presence or absence.

Feature Extraction Cont

 Iterators make is super easy to extract
features from text.

 Combine them with defaultdict and itertools
to make life even simpler.

 Unigram Counts

NLTK

 NLTK is Natural Language Toolkit written in
Python. (http://www.nltk.org)

 An excellent library with
 Implementations of wide variety of NLP algorithms

for tagging, parsing, stemming etc
 Various trained models for Part of Speech tagger,

sentence splitter etc
 Wrappers for various ML libraries. Ex: Weka

 NLTK Book (http://www.nltk.org/book) is a
good place to start

http://www.nltk.org/
http://www.nltk.org/book

Naive Bayes in NLTK

 NLTK has an implementation of NB classifier.
 Very easy to use
fsets = [(unigrams(txt),lbl) for (txt, lbl) in
trdata]

clsfr = nltk.NaiveBayesClassifier.train(fsets)

print nltk.classify.accuracy(clsfr, fsets)

 Although the implementation doesn't look
correct. :-(

Scikits.learn

 Actively developed and has good
documentation.
(http://scikit-learn.sourceforge.net/stable/)

 If I had discovered it earlier, would have
implemented in this framework

Python module integrating classic machine learning
algorithms in the tightly-knit world of scientific Python
packages (numpy, scipy, matplotlib)

http://scikit-learn.sourceforge.net/stable/

Scikits.learn

 Easy to use though slightly different interface
as compared to NLTK

 Assuming X contains the feature sets and Y, the
corresponding labels

from scikits.learn.naive_bayes import
BernoulliNB

clsfr = BernoulliNB()

clsfr.fit(X,Y)

print clsfr.score(X,Y)

Scikits.learn

 X & Y need to be numpy arrays. Assuming we
are using 5000 features:
X = np.zeros((len(fsets), 5000), dtype =
'float64')

 for docidx, fset in enumerate(fsets):

 for fname, fval in fset.iteritems():

 if fname in featd:

 X[docidx][featd[fname]] = fval

 featd is a map of feature_name to feature_id

Scikits.learn

 Learning curve is steeper
 Talks in terms of Estimators, likelihoods and other

technical terms
 Needs familiarity with basic numpy concepts.

(Totally worth it if you are planning to do any
serious numerical work in Python.)

 You need to have some level of familiarity with
Linear Algebra to peek inside and optimize or to
implement your own classifiers.

Our Experiment

 Preprocessing
 Using Wikipedia API through wikitools (

http://code.google.com/p/python-wikitools/)
 Convert link markups, strip out the reference

markings, decode html entities

 Features
 Binary unigram occurance features
 Section headings

http://code.google.com/p/python-wikitools/

Demo

Demo

