Python Twisted

Mahendra M
@mahendra

Methods of concurrency

= Workers

= Threads and processes

= Event driven

[et us examine this with the case of a web server

Worker model

o worker 1()
A

read(fp)

db_rd()

db wr ()

sock _wr ()

Worker model

o worker 1()

read(fp)

BLOCKING

db wr ()

sock _wr ()

How does it scale ?

A worker gets CPU when it 1s not blocking

When it makes a blocking call, it sleeps till the sys-
call 1s requested

At this time another worker gets CPU

Worker might block before it completes it's
allocated timeslice.

This model has worked great and still works great

Eg: Apache, Squid

Overheads

= Worker management

= Thread creation
= Process creation and management

= Synchronization
= Scheduling (though this 1s left to OS)

= More system calls for blocking operations

Event Driven Code

Non blocking code blocks

Code execution on events
= Data on sockets, timer, new connection

Execution triggered from an event loop

Full use of CPU timeslice

Visually ...

Non blocking functions

event 1

hdler 1()

Events are posted

hdler n()

event 2 block on events(.. = hdler 2()

Visually ...

Non blocking functions

-

event 1

event 2 block on events()

hdler 2()

Events are posted

Web Server

Non blocking functions

request open(fp) EEgreg()

event loop() » reg()

wri sql() Egreg()

sql_read

sql_writ

sock_Wr() #=reg()

responded

Event Driven Designs

Nginx, Tornado
Varnish
Memcached

OS support
= e¢poll — Linux
= kqueue — BSDs

Event Driven Libraries

Libevent
Python-twisted

Java NIO

= Apache MINA, Tomcat (not default)
= Jetty

QT

Drawbacks

Tougher to code, design and maintain
Workers required to make use of multiple CPUs

All callbacks must be non-blocking
= Tough to get non-blocking libraries for all modules
No 1solation

= A block in any event loop can freeze everything

Python Twisted

Event driven programming framework
MIT licensed
8 years old and stable

Support for large number of protocols

= Client and server support
= HTTP - SOAP, REST, CouchDB, XMLRPC,
= Sockets, TCP/IP, Multicast, TLS, SSH, IMAP ...

= SMTP, NNTP, FTP, Memcached, AMQP, XMPP, ...

Deferred

The central concept of twisted

A callback returns a deferred to indicate that the job

1s not done yet.

The cal

ler can add callbacks to a deferred.

The cal

Eh ?

Ibacks are invoked then the job 1s done

Deferred example

from twisted.internet import reactor

Define a success callback
def cb(argl, arg2):
print "Timeout after %d %s” % (argl, arg2)

Define an error callback
def eb(error):
Print "error %s” % error

Invoke a non blocking task
deferred = reactor.calllLater(4)

Register the callbacks on the returned deferred
deferred.addCallback(cb, 4, 'twisted is great')
deferred.addErrback(eb)

Run the event loop
reactor.run()

Twisted Server

from twisted.internet.protocol import Protocol, Factory
from twisted.internet import reactor

class QOTD(Protocol):
def connectionMade(self):

self.transport.write("Welcome\r\n")
self.transport.loseConnection()

Next lines are magic:
factory = Factory()
factory.protocol = QOTD

8007 is the port you want to run under.
reactor.listenTCP (8007, factory)
reactor.run()

Deferred chaining

A callback can register and return another deferred

This callback can return another deferred

In short we have a deferred chain ...

Web server example:

Deferred Chaining

2
1
1

|

PR

]

Advanced twisted

Twisted application support
= Mixing and matching twisted applications
Command line 'twistd' runner

= Pre-defined twisted apps

= Web, telnet, xmpp, dns, conch (ssh), mail, ...

Plugin architecture

ADBAPI — for RDBMS

Advanced twisted

Perspective Broker

= RPC and object sharing

= Spreading out servers

Cred — Authentication framework
Deferring to threads

External loops (GTK, QT)
Streaming support

MVC framework (Complex. Very complex)

Drawbacks

= Single threaded by design
= Makes use of only one core/CPU

= Need external modules for using multiple CPU

= Run multiple instances of twisted on a box
" num_instances = num_cpus

= Use nginx (HTTP), HAProxy for load balancing

Demos

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

