Introduction to Image Processing with SciPy and NumPy

Anil C R
cranil@ee.iisc.ernet.in

Department of Electrical Engineering
Indian Institute of Science

September 19, 2010
Introduction

1. Image Processing
 What are SciPy and NumPy?

Some Theory

2. Filters
 The Fourier Transform

Doing the Stuff in Python

Demo(s)
1 Introduction
 - Image Processing
 - What are SciPy and NumPy?

2 Some Theory
 - Filters
 - The Fourier Transform

3 Doing the Stuff in Python

4 Demo(s)
What are Images?

- **Continious domain, Continious range**
 \[f : \mathbb{R}^2 \to \mathbb{R}(\mathbb{R}^3) \]

- **Discrete domain, Continious range**
 \[f : \mathbb{Z}^2 \to \mathbb{R}(\mathbb{R}^3) \]

- **Discrete domain, Discrete range**
 \[f : \mathbb{Z}^2 \to \mathbb{Z}(\mathbb{R}^3) \]

- **Finite domain, Continious range**
 \[f : \mathbb{Z}_m \times \mathbb{Z}_n \to \mathbb{R}(\mathbb{R}^3) \]
What are Images?

- **Continuous domain, Continuous range**
 \[f : \mathbb{R}^2 \rightarrow \mathbb{R}(\mathbb{R}^3) \]

- **Discrete domain, Continuous range**
 \[f : \mathbb{Z}^2 \rightarrow \mathbb{R}(\mathbb{R}^3) \]

- **Discrete domain, Discrete range**
 \[f : \mathbb{Z}^2 \rightarrow \mathbb{Z}(\mathbb{R}^3) \]

- **Finite domain, Continuous range**
 \[f : \mathbb{Z}_m \times \mathbb{Z}_n \rightarrow \mathbb{R}(\mathbb{R}^3) \]
Using Matrices to Represent Images

- \(f \) as an element of \(\mathbb{R}^{m \times n}(\mathbb{R}^{m \times n \times k}) \)
- \(\Rightarrow \) Linear Algebra
- \(\Rightarrow \) LAPACK, BLAS, etc
- \(\Rightarrow \) FORTRAN, C, etc
- \(\Rightarrow \) Super Hard
- \(\Rightarrow \) MATLAB
- \(\Rightarrow \) Super Expensive
- \(\Rightarrow \) SciPy + NumPy, GNU Octave, Scilab, etc
- PyCon 2010
- \(\Rightarrow \) SciPy + NumPy
Outline

1. **Introduction**
 - Image Processing
 - What are SciPy and NumPy?

2. **Some Theory**
 - Filters
 - The Fourier Transform

3. **Doing the Stuff in Python**

4. **Demo(s)**
NumPy

- Numerical Processing
- Started off as *numecric* written in 1995 by Jim Huguni et al.
- Numeric was slow for large arrays and was rewritten for large arrays as *Numarray*
- Travis Oliphant, in 2005 merged them both into *NumPy*
SciPy

- Libraries for scientific computing
- Linear Algebra
- Statistics
- Signal and Image processing
- Optimization
- ODE Solvers
Outline

1. Introduction
 - Image Processing
 - What are SciPy and NumPy?

2. Some Theory
 - Filters
 - The Fourier Transform

3. Doing the Stuff in Python

4. Demo(s)
Filters

- Keep what you want and throw away the rest
- Studying filters is the most important part in Image Processing
- Classified into *linear* and *non-linear* filters
Given images f_1, f_2, \ldots, f_n a filter H is called linear if

$$H(\alpha_1 f_1 + \alpha_2 f_2 + \cdots + \alpha_n f_n) = \alpha_1 H(f_1) + \alpha_2 H(f_2) + \cdots + \alpha_n H(f_n)$$

Linearity can be useful in fast computation.
Outline

1. Introduction
 - Image Processing
 - What are SciPy and NumPy?

2. Some Theory
 - Filters
 - The Fourier Transform

3. Doing the Stuff in Python

4. Demo(s)
Time and Frequency Domains
Fourier Transform

Continuous FT

\[
F(\omega_x x, \omega_y y) = \int\int_{\mathbb{R}^2} f(x, y) \exp(-i\omega_x x - i\omega_y y) \, dx \, dy
\]

Discrete FT

\[
F(\omega_x x, \omega_y y) = \sum_0^M \sum_0^N f(x, y) \exp(-i\left\{\frac{2\pi\omega_x}{M} x - \frac{2\pi\omega_y}{N} y \right\})
\]

Notation: \(F \) is the FT of \(f \), also \(F = \mathcal{F}\{f\} \)
Convolution

Continuous

\[(f \ast g)(x, y) = \int\int_{\mathbb{R}^2} f(x', y')g(x - x', y - y')\,dx\,dy\]

Discrete

\[(f \ast g)(x, y) = \sum\sum_{\mathbb{Z}^2} f(x, y)g(x - x', y - y')\]

Theorem

(a) \(\mathcal{F}\{f \ast g\} = FG\)

(b) \(\mathcal{F}\{fg\} = F \ast G\)

Any linear filter can be written as a convolution.
Computing the Discrete Fourier Transform takes $O(n^2m^2)$ for an $m \times n$ image.

FFT Computes the same in $O(n \log nm \log m)$
Interactive Python

- Install NumPy
- Install SciPy
- Install Matplotlib
- Install IPython

Running IPython

$ ipython -pylab
Fast Fourier Transform (FFT)

FFT in NumPy

```
In[1]: from scipy import lena
In[2]: f = lena()
In[3]: from numpy.fft import fft2 # unnecessary if you invoke ipython with --pylab
In[4]: F = fft2(f)
In[5]: imshow(real(F))
```
Fast Fourier Transform (FFT)

FFT in NumPy

In[1]: from scipy import lena
In[2]: f = lena()
In[3]: from numpy.fft import fft2 #
unnecessary if you invoke ipython with -pylab
In[4]: F = fft2(f)
In[5]: imshow(real(F))
Fast Fourier Transform (FFT)

FFT in NumPy

In[1]: from scipy import lena
In[2]: f = lena()
In[3]: from numpy.fft import fft2 # unnecessary if you invoke ipython with -pylab
In[4]: F = fft2(f)
In[5]: imshow(real(F))
Fast Fourier Transform (FFT)

FFT in NumPy

In[1]: from scipy import lena
In[2]: f = lena()
In[3]: from numpy.fft import fft2 # unnecessary if you invoke ipython with -pylab
In[4]: F = fft2(f)
In[5]: imshow(real(F))
Fast Fourier Transform (FFT)

FFT in NumPy

In[1]: from scipy import lena
In[2]: f = lena()
In[3]: from numpy.fft import fft2 # unnecessary if you invoke ipython with -pylab
In[4]: F = fft2(f)
In[5]: imshow(real(F))
Demo: Cells

Input Image
Consider the image:
Find the variance of the neighborhood of each pixel, store them as a 2D array.

![Image of a 2D array with numbers 12, 28, 45, 86, 91, 18, 16, 12, 27, 77, 34, 67, 13, 44, 56, 88]
Find the variance of the neighborhood of each pixel, store them as a 2D array.

\[
\begin{array}{cccccc}
12 & 28 & 45 & 86 & \ \ \\
91 & 18 & 16 & 12 & \ \ \\
27 & 77 & 34 & 67 & \ \ \\
13 & 44 & 56 & 88 & \ \ \\
\end{array}
\quad
\begin{array}{cccccc}
12 & 28 & 45 & 86 & \ \ \\
91 & 18 & 16 & 12 & \ \ \\
27 & 77 & 34 & 67 & \ \ \\
13 & 44 & 56 & 88 & \ \ \\
\end{array}
\]
Find the variance of the neighborhood of each pixel, store them as a 2D array.
Variance map \((V)\)

\[V > E\{V\} \]

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>996</td>
<td>744</td>
<td>654</td>
<td>875</td>
<td></td>
</tr>
<tr>
<td>920</td>
<td>686</td>
<td>689</td>
<td>700</td>
<td></td>
</tr>
<tr>
<td>870</td>
<td>670</td>
<td>695</td>
<td>750</td>
<td></td>
</tr>
<tr>
<td>571</td>
<td>426</td>
<td>344</td>
<td>380</td>
<td></td>
</tr>
</tbody>
</table>
Variance map \((V)\)
\[V > \mathbb{E}\{V\}\]
Algorithm on the cell image: