
llvm-py: Writing Compilers Using Python
PyCon India 2010

Mahadevan R
mdevan@mdevan.org

September 8, 2010

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 1 / 13

mdevan@mdevan.org

Outline

Compilers

LLVM

llvm-py

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 2 / 13

Compilers What is a Compiler?

What is a Compiler?

What is a compiler?

Something that transforms “source code” into “something else”

What is “source code”?

A well-structured, textual representation of a program
Not: preprocessors, assemblers

What is “something else?”

Another well-structured textual representation
Intermediate, binary representation (AOT compilers)
In-memory executable code (JIT compilers)
Executable images

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 3 / 13

Compilers What is a Compiler?

What is a Compiler?

What is a compiler?

Something that transforms “source code” into “something else”

What is “source code”?

A well-structured, textual representation of a program
Not: preprocessors, assemblers

What is “something else?”

Another well-structured textual representation
Intermediate, binary representation (AOT compilers)
In-memory executable code (JIT compilers)
Executable images

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 3 / 13

Compilers What is a Compiler?

What is a Compiler?

What is a compiler?

Something that transforms “source code” into “something else”

What is “source code”?

A well-structured, textual representation of a program
Not: preprocessors, assemblers

What is “something else?”

Another well-structured textual representation
Intermediate, binary representation (AOT compilers)
In-memory executable code (JIT compilers)
Executable images

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 3 / 13

Compilers What is a Compiler?

What is a Compiler?

What is a compiler?

Something that transforms “source code” into “something else”

What is “source code”?

A well-structured, textual representation of a program

Not: preprocessors, assemblers

What is “something else?”

Another well-structured textual representation
Intermediate, binary representation (AOT compilers)
In-memory executable code (JIT compilers)
Executable images

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 3 / 13

Compilers What is a Compiler?

What is a Compiler?

What is a compiler?

Something that transforms “source code” into “something else”

What is “source code”?

A well-structured, textual representation of a program
Not: preprocessors, assemblers

What is “something else?”

Another well-structured textual representation
Intermediate, binary representation (AOT compilers)
In-memory executable code (JIT compilers)
Executable images

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 3 / 13

Compilers What is a Compiler?

What is a Compiler?

What is a compiler?

Something that transforms “source code” into “something else”

What is “source code”?

A well-structured, textual representation of a program
Not: preprocessors, assemblers

What is “something else?”

Another well-structured textual representation
Intermediate, binary representation (AOT compilers)
In-memory executable code (JIT compilers)
Executable images

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 3 / 13

Compilers What is a Compiler?

What is a Compiler?

What is a compiler?

Something that transforms “source code” into “something else”

What is “source code”?

A well-structured, textual representation of a program
Not: preprocessors, assemblers

What is “something else?”

Another well-structured textual representation

Intermediate, binary representation (AOT compilers)
In-memory executable code (JIT compilers)
Executable images

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 3 / 13

Compilers What is a Compiler?

What is a Compiler?

What is a compiler?

Something that transforms “source code” into “something else”

What is “source code”?

A well-structured, textual representation of a program
Not: preprocessors, assemblers

What is “something else?”

Another well-structured textual representation
Intermediate, binary representation (AOT compilers)

In-memory executable code (JIT compilers)
Executable images

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 3 / 13

Compilers What is a Compiler?

What is a Compiler?

What is a compiler?

Something that transforms “source code” into “something else”

What is “source code”?

A well-structured, textual representation of a program
Not: preprocessors, assemblers

What is “something else?”

Another well-structured textual representation
Intermediate, binary representation (AOT compilers)
In-memory executable code (JIT compilers)

Executable images

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 3 / 13

Compilers What is a Compiler?

What is a Compiler?

What is a compiler?

Something that transforms “source code” into “something else”

What is “source code”?

A well-structured, textual representation of a program
Not: preprocessors, assemblers

What is “something else?”

Another well-structured textual representation
Intermediate, binary representation (AOT compilers)
In-memory executable code (JIT compilers)
Executable images

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 3 / 13

Compilers Inside a Compiler

Inside a Compiler

What does the compiler do with the source code?

Lexical analysis produces tokens

Parser eats tokens, produces AST

What is abstract about an AST?

What next after an AST?

What is an intermediate form (IR)?

example: IRs in gcc: source → GENERIC → GIMPLE → RTL →
backend

What is Static Single Assignment (SSA) form?

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 4 / 13

Compilers Inside a Compiler

Inside a Compiler

What does the compiler do with the source code?

Lexical analysis produces tokens

Parser eats tokens, produces AST

What is abstract about an AST?

What next after an AST?

What is an intermediate form (IR)?

example: IRs in gcc: source → GENERIC → GIMPLE → RTL →
backend

What is Static Single Assignment (SSA) form?

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 4 / 13

Compilers Inside a Compiler

Inside a Compiler

What does the compiler do with the source code?

Lexical analysis produces tokens

Parser eats tokens, produces AST

What is abstract about an AST?

What next after an AST?

What is an intermediate form (IR)?

example: IRs in gcc: source → GENERIC → GIMPLE → RTL →
backend

What is Static Single Assignment (SSA) form?

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 4 / 13

Compilers Inside a Compiler

Inside a Compiler

What does the compiler do with the source code?

Lexical analysis produces tokens

Parser eats tokens, produces AST

What is abstract about an AST?

What next after an AST?

What is an intermediate form (IR)?

example: IRs in gcc: source → GENERIC → GIMPLE → RTL →
backend

What is Static Single Assignment (SSA) form?

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 4 / 13

Compilers Inside a Compiler

Inside a Compiler

What does the compiler do with the source code?

Lexical analysis produces tokens

Parser eats tokens, produces AST

What is abstract about an AST?

What next after an AST?

What is an intermediate form (IR)?

example: IRs in gcc: source → GENERIC → GIMPLE → RTL →
backend

What is Static Single Assignment (SSA) form?

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 4 / 13

Compilers Inside a Compiler

Inside a Compiler

What does the compiler do with the source code?

Lexical analysis produces tokens

Parser eats tokens, produces AST

What is abstract about an AST?

What next after an AST?

What is an intermediate form (IR)?

example: IRs in gcc: source → GENERIC → GIMPLE → RTL →
backend

What is Static Single Assignment (SSA) form?

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 4 / 13

Compilers Inside a Compiler

Inside a Compiler

What does the compiler do with the source code?

Lexical analysis produces tokens

Parser eats tokens, produces AST

What is abstract about an AST?

What next after an AST?

What is an intermediate form (IR)?

example: IRs in gcc: source → GENERIC → GIMPLE → RTL →
backend

What is Static Single Assignment (SSA) form?

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 4 / 13

Compilers Passes, Optimization and Code Generation

Passes, Optimization and Code Generation

What is a “pass”?

What is a “optimization”?

What is a “code generator”?

What is a “code generator generator”?

Buzzwords: Register allocator, vectorization, interprocedural and
link-time optimizations, memory hierarchy optimizations

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 5 / 13

Compilers Passes, Optimization and Code Generation

Passes, Optimization and Code Generation

What is a “pass”?

What is a “optimization”?

What is a “code generator”?

What is a “code generator generator”?

Buzzwords: Register allocator, vectorization, interprocedural and
link-time optimizations, memory hierarchy optimizations

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 5 / 13

Compilers Passes, Optimization and Code Generation

Passes, Optimization and Code Generation

What is a “pass”?

What is a “optimization”?

What is a “code generator”?

What is a “code generator generator”?

Buzzwords: Register allocator, vectorization, interprocedural and
link-time optimizations, memory hierarchy optimizations

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 5 / 13

Compilers Passes, Optimization and Code Generation

Passes, Optimization and Code Generation

What is a “pass”?

What is a “optimization”?

What is a “code generator”?

What is a “code generator generator”?

Buzzwords: Register allocator, vectorization, interprocedural and
link-time optimizations, memory hierarchy optimizations

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 5 / 13

Compilers Passes, Optimization and Code Generation

Passes, Optimization and Code Generation

What is a “pass”?

What is a “optimization”?

What is a “code generator”?

What is a “code generator generator”?

Buzzwords: Register allocator, vectorization, interprocedural and
link-time optimizations, memory hierarchy optimizations

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 5 / 13

Compilers The Frontend and The Backend

The Frontend and The Backend

Everything before the first IR is usually called the frontend

And everything after as the backend

LLVM and llvm-py deal only with backends

Frontends tend to be simpler

Many frontends for a backend is common (Scala, Groovy, Clojure:
Java; C#, IronPython, etc: .NET)

To build a front end in Python:

hand-coded lexer, (rec-desc) parser
Antlr (generates Python)
Yacc, Bison, Lemon (generates C, wrap to Python)
Sphinx (C++, wrap to Python)
various Python parser generators

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 6 / 13

Compilers The Frontend and The Backend

The Frontend and The Backend

Everything before the first IR is usually called the frontend

And everything after as the backend

LLVM and llvm-py deal only with backends

Frontends tend to be simpler

Many frontends for a backend is common (Scala, Groovy, Clojure:
Java; C#, IronPython, etc: .NET)

To build a front end in Python:

hand-coded lexer, (rec-desc) parser
Antlr (generates Python)
Yacc, Bison, Lemon (generates C, wrap to Python)
Sphinx (C++, wrap to Python)
various Python parser generators

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 6 / 13

Compilers The Frontend and The Backend

The Frontend and The Backend

Everything before the first IR is usually called the frontend

And everything after as the backend

LLVM and llvm-py deal only with backends

Frontends tend to be simpler

Many frontends for a backend is common (Scala, Groovy, Clojure:
Java; C#, IronPython, etc: .NET)

To build a front end in Python:

hand-coded lexer, (rec-desc) parser
Antlr (generates Python)
Yacc, Bison, Lemon (generates C, wrap to Python)
Sphinx (C++, wrap to Python)
various Python parser generators

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 6 / 13

Compilers The Frontend and The Backend

The Frontend and The Backend

Everything before the first IR is usually called the frontend

And everything after as the backend

LLVM and llvm-py deal only with backends

Frontends tend to be simpler

Many frontends for a backend is common (Scala, Groovy, Clojure:
Java; C#, IronPython, etc: .NET)

To build a front end in Python:

hand-coded lexer, (rec-desc) parser
Antlr (generates Python)
Yacc, Bison, Lemon (generates C, wrap to Python)
Sphinx (C++, wrap to Python)
various Python parser generators

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 6 / 13

Compilers The Frontend and The Backend

The Frontend and The Backend

Everything before the first IR is usually called the frontend

And everything after as the backend

LLVM and llvm-py deal only with backends

Frontends tend to be simpler

Many frontends for a backend is common (Scala, Groovy, Clojure:
Java; C#, IronPython, etc: .NET)

To build a front end in Python:

hand-coded lexer, (rec-desc) parser
Antlr (generates Python)
Yacc, Bison, Lemon (generates C, wrap to Python)
Sphinx (C++, wrap to Python)
various Python parser generators

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 6 / 13

Compilers The Frontend and The Backend

The Frontend and The Backend

Everything before the first IR is usually called the frontend

And everything after as the backend

LLVM and llvm-py deal only with backends

Frontends tend to be simpler

Many frontends for a backend is common (Scala, Groovy, Clojure:
Java; C#, IronPython, etc: .NET)

To build a front end in Python:

hand-coded lexer, (rec-desc) parser
Antlr (generates Python)
Yacc, Bison, Lemon (generates C, wrap to Python)
Sphinx (C++, wrap to Python)
various Python parser generators

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 6 / 13

Compilers The Frontend and The Backend

The Frontend and The Backend

Everything before the first IR is usually called the frontend

And everything after as the backend

LLVM and llvm-py deal only with backends

Frontends tend to be simpler

Many frontends for a backend is common (Scala, Groovy, Clojure:
Java; C#, IronPython, etc: .NET)

To build a front end in Python:

hand-coded lexer, (rec-desc) parser

Antlr (generates Python)
Yacc, Bison, Lemon (generates C, wrap to Python)
Sphinx (C++, wrap to Python)
various Python parser generators

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 6 / 13

Compilers The Frontend and The Backend

The Frontend and The Backend

Everything before the first IR is usually called the frontend

And everything after as the backend

LLVM and llvm-py deal only with backends

Frontends tend to be simpler

Many frontends for a backend is common (Scala, Groovy, Clojure:
Java; C#, IronPython, etc: .NET)

To build a front end in Python:

hand-coded lexer, (rec-desc) parser
Antlr (generates Python)

Yacc, Bison, Lemon (generates C, wrap to Python)
Sphinx (C++, wrap to Python)
various Python parser generators

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 6 / 13

Compilers The Frontend and The Backend

The Frontend and The Backend

Everything before the first IR is usually called the frontend

And everything after as the backend

LLVM and llvm-py deal only with backends

Frontends tend to be simpler

Many frontends for a backend is common (Scala, Groovy, Clojure:
Java; C#, IronPython, etc: .NET)

To build a front end in Python:

hand-coded lexer, (rec-desc) parser
Antlr (generates Python)
Yacc, Bison, Lemon (generates C, wrap to Python)

Sphinx (C++, wrap to Python)
various Python parser generators

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 6 / 13

Compilers The Frontend and The Backend

The Frontend and The Backend

Everything before the first IR is usually called the frontend

And everything after as the backend

LLVM and llvm-py deal only with backends

Frontends tend to be simpler

Many frontends for a backend is common (Scala, Groovy, Clojure:
Java; C#, IronPython, etc: .NET)

To build a front end in Python:

hand-coded lexer, (rec-desc) parser
Antlr (generates Python)
Yacc, Bison, Lemon (generates C, wrap to Python)
Sphinx (C++, wrap to Python)

various Python parser generators

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 6 / 13

Compilers The Frontend and The Backend

The Frontend and The Backend

Everything before the first IR is usually called the frontend

And everything after as the backend

LLVM and llvm-py deal only with backends

Frontends tend to be simpler

Many frontends for a backend is common (Scala, Groovy, Clojure:
Java; C#, IronPython, etc: .NET)

To build a front end in Python:

hand-coded lexer, (rec-desc) parser
Antlr (generates Python)
Yacc, Bison, Lemon (generates C, wrap to Python)
Sphinx (C++, wrap to Python)
various Python parser generators

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 6 / 13

LLVM What is LLVM?

What is LLVM?

Primarily a set of libraries..

..with which you can make a compiler backend..

..or a VM with JIT support (but hard to get this right)

It provides:

IR data structure, with text and binary representations
wide range of optimizations
code generator (partly description-based) for many platforms
JIT-compile-execute from IR
link-time optimization (LTO)
support for accurate garbage collection

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 7 / 13

LLVM What is LLVM?

What is LLVM?

Primarily a set of libraries..

..with which you can make a compiler backend..

..or a VM with JIT support (but hard to get this right)

It provides:

IR data structure, with text and binary representations
wide range of optimizations
code generator (partly description-based) for many platforms
JIT-compile-execute from IR
link-time optimization (LTO)
support for accurate garbage collection

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 7 / 13

LLVM What is LLVM?

What is LLVM?

Primarily a set of libraries..

..with which you can make a compiler backend..

..or a VM with JIT support (but hard to get this right)

It provides:

IR data structure, with text and binary representations
wide range of optimizations
code generator (partly description-based) for many platforms
JIT-compile-execute from IR
link-time optimization (LTO)
support for accurate garbage collection

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 7 / 13

LLVM What is LLVM?

What is LLVM?

Primarily a set of libraries..

..with which you can make a compiler backend..

..or a VM with JIT support (but hard to get this right)

It provides:

IR data structure, with text and binary representations
wide range of optimizations
code generator (partly description-based) for many platforms
JIT-compile-execute from IR
link-time optimization (LTO)
support for accurate garbage collection

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 7 / 13

LLVM What is LLVM?

What is LLVM?

Primarily a set of libraries..

..with which you can make a compiler backend..

..or a VM with JIT support (but hard to get this right)

It provides:

IR data structure, with text and binary representations

wide range of optimizations
code generator (partly description-based) for many platforms
JIT-compile-execute from IR
link-time optimization (LTO)
support for accurate garbage collection

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 7 / 13

LLVM What is LLVM?

What is LLVM?

Primarily a set of libraries..

..with which you can make a compiler backend..

..or a VM with JIT support (but hard to get this right)

It provides:

IR data structure, with text and binary representations
wide range of optimizations

code generator (partly description-based) for many platforms
JIT-compile-execute from IR
link-time optimization (LTO)
support for accurate garbage collection

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 7 / 13

LLVM What is LLVM?

What is LLVM?

Primarily a set of libraries..

..with which you can make a compiler backend..

..or a VM with JIT support (but hard to get this right)

It provides:

IR data structure, with text and binary representations
wide range of optimizations
code generator (partly description-based) for many platforms

JIT-compile-execute from IR
link-time optimization (LTO)
support for accurate garbage collection

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 7 / 13

LLVM What is LLVM?

What is LLVM?

Primarily a set of libraries..

..with which you can make a compiler backend..

..or a VM with JIT support (but hard to get this right)

It provides:

IR data structure, with text and binary representations
wide range of optimizations
code generator (partly description-based) for many platforms
JIT-compile-execute from IR

link-time optimization (LTO)
support for accurate garbage collection

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 7 / 13

LLVM What is LLVM?

What is LLVM?

Primarily a set of libraries..

..with which you can make a compiler backend..

..or a VM with JIT support (but hard to get this right)

It provides:

IR data structure, with text and binary representations
wide range of optimizations
code generator (partly description-based) for many platforms
JIT-compile-execute from IR
link-time optimization (LTO)

support for accurate garbage collection

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 7 / 13

LLVM What is LLVM?

What is LLVM?

Primarily a set of libraries..

..with which you can make a compiler backend..

..or a VM with JIT support (but hard to get this right)

It provides:

IR data structure, with text and binary representations
wide range of optimizations
code generator (partly description-based) for many platforms
JIT-compile-execute from IR
link-time optimization (LTO)
support for accurate garbage collection

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 7 / 13

LLVM LLVM Highlights

LLVM Highlights

Written in readable C++

APIs and command-line tools

Reasonable documentation, helpful and mature community

clang is a now-famous subproject of LLVM

llvm-gcc is gcc frontend (C, C++, Java, Ada, Fortran, ObjC) +
LLVM backend

LLVM users: Unladen Swallow, Iced Tea, Rubinus, llvm-lua, GHC,
LDC

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 8 / 13

LLVM LLVM Highlights

LLVM Highlights

Written in readable C++

APIs and command-line tools

Reasonable documentation, helpful and mature community

clang is a now-famous subproject of LLVM

llvm-gcc is gcc frontend (C, C++, Java, Ada, Fortran, ObjC) +
LLVM backend

LLVM users: Unladen Swallow, Iced Tea, Rubinus, llvm-lua, GHC,
LDC

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 8 / 13

LLVM LLVM Highlights

LLVM Highlights

Written in readable C++

APIs and command-line tools

Reasonable documentation, helpful and mature community

clang is a now-famous subproject of LLVM

llvm-gcc is gcc frontend (C, C++, Java, Ada, Fortran, ObjC) +
LLVM backend

LLVM users: Unladen Swallow, Iced Tea, Rubinus, llvm-lua, GHC,
LDC

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 8 / 13

LLVM LLVM Highlights

LLVM Highlights

Written in readable C++

APIs and command-line tools

Reasonable documentation, helpful and mature community

clang is a now-famous subproject of LLVM

llvm-gcc is gcc frontend (C, C++, Java, Ada, Fortran, ObjC) +
LLVM backend

LLVM users: Unladen Swallow, Iced Tea, Rubinus, llvm-lua, GHC,
LDC

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 8 / 13

LLVM LLVM Highlights

LLVM Highlights

Written in readable C++

APIs and command-line tools

Reasonable documentation, helpful and mature community

clang is a now-famous subproject of LLVM

llvm-gcc is gcc frontend (C, C++, Java, Ada, Fortran, ObjC) +
LLVM backend

LLVM users: Unladen Swallow, Iced Tea, Rubinus, llvm-lua, GHC,
LDC

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 8 / 13

LLVM LLVM Highlights

LLVM Highlights

Written in readable C++

APIs and command-line tools

Reasonable documentation, helpful and mature community

clang is a now-famous subproject of LLVM

llvm-gcc is gcc frontend (C, C++, Java, Ada, Fortran, ObjC) +
LLVM backend

LLVM users: Unladen Swallow, Iced Tea, Rubinus, llvm-lua, GHC,
LDC

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 8 / 13

LLVM The LLVM IR

The LLVM IR

The starting point of LLVM’s work is the IR

Frontends construct an in-memory IR
Equivalent textual respresentation called LLVM assembly
Equivalent binary respresentation called bitcode

“Hello world” in LLVM Assembly

@msg = private constant [15 x i8] c"Hello , world !\0A\00"

declare i32 @puts(i8*)

define i32 @main(i32 %argc , i8** %argv) {

entry:

%0 = getelementptr [15 x i8]* @msg , i64 0, i64 0

%1 = tail call i32 @puts(i8* %0)

ret i32 undef

}

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 9 / 13

LLVM The LLVM IR

The LLVM IR

The starting point of LLVM’s work is the IR
Frontends construct an in-memory IR

Equivalent textual respresentation called LLVM assembly
Equivalent binary respresentation called bitcode

“Hello world” in LLVM Assembly

@msg = private constant [15 x i8] c"Hello , world !\0A\00"

declare i32 @puts(i8*)

define i32 @main(i32 %argc , i8** %argv) {

entry:

%0 = getelementptr [15 x i8]* @msg , i64 0, i64 0

%1 = tail call i32 @puts(i8* %0)

ret i32 undef

}

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 9 / 13

LLVM The LLVM IR

The LLVM IR

The starting point of LLVM’s work is the IR
Frontends construct an in-memory IR
Equivalent textual respresentation called LLVM assembly

Equivalent binary respresentation called bitcode

“Hello world” in LLVM Assembly

@msg = private constant [15 x i8] c"Hello , world !\0A\00"

declare i32 @puts(i8*)

define i32 @main(i32 %argc , i8** %argv) {

entry:

%0 = getelementptr [15 x i8]* @msg , i64 0, i64 0

%1 = tail call i32 @puts(i8* %0)

ret i32 undef

}

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 9 / 13

LLVM The LLVM IR

The LLVM IR

The starting point of LLVM’s work is the IR
Frontends construct an in-memory IR
Equivalent textual respresentation called LLVM assembly
Equivalent binary respresentation called bitcode

“Hello world” in LLVM Assembly

@msg = private constant [15 x i8] c"Hello , world !\0A\00"

declare i32 @puts(i8*)

define i32 @main(i32 %argc , i8** %argv) {

entry:

%0 = getelementptr [15 x i8]* @msg , i64 0, i64 0

%1 = tail call i32 @puts(i8* %0)

ret i32 undef

}

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 9 / 13

LLVM The LLVM IR

The LLVM IR

The starting point of LLVM’s work is the IR
Frontends construct an in-memory IR
Equivalent textual respresentation called LLVM assembly
Equivalent binary respresentation called bitcode

“Hello world” in LLVM Assembly

@msg = private constant [15 x i8] c"Hello , world !\0A\00"

declare i32 @puts(i8*)

define i32 @main(i32 %argc , i8** %argv) {

entry:

%0 = getelementptr [15 x i8]* @msg , i64 0, i64 0

%1 = tail call i32 @puts(i8* %0)

ret i32 undef

}

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 9 / 13

LLVM The LLVM IR

The LLVM IR

The starting point of LLVM’s work is the IR
Frontends construct an in-memory IR
Equivalent textual respresentation called LLVM assembly
Equivalent binary respresentation called bitcode

“Hello world” in LLVM Assembly

@msg = private constant [15 x i8] c"Hello , world !\0A\00"

declare i32 @puts(i8*)

define i32 @main(i32 %argc , i8** %argv) {

entry:

%0 = getelementptr [15 x i8]* @msg , i64 0, i64 0

%1 = tail call i32 @puts(i8* %0)

ret i32 undef

}

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 9 / 13

LLVM A Word About clang

A Word About clang

clang is a C, Objective C and C++ frontend

it converts C/ObjC/C++ code to LLVM IR

which can be played around with using llvm-py

and then compiled “normally”

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 10 / 13

LLVM A Word About clang

A Word About clang

clang is a C, Objective C and C++ frontend

it converts C/ObjC/C++ code to LLVM IR

which can be played around with using llvm-py

and then compiled “normally”

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 10 / 13

LLVM A Word About clang

A Word About clang

clang is a C, Objective C and C++ frontend

it converts C/ObjC/C++ code to LLVM IR

which can be played around with using llvm-py

and then compiled “normally”

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 10 / 13

LLVM A Word About clang

A Word About clang

clang is a C, Objective C and C++ frontend

it converts C/ObjC/C++ code to LLVM IR

which can be played around with using llvm-py

and then compiled “normally”

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 10 / 13

llvm-py What is llvm-py?

What is llvm-py?

Python bindings for LLVM

Including JIT

Excellent for experimenting and prototyping

Available in Ubuntu, Debian, MacPorts (but may be out of date)

Current version (0.6) works with LLVM 2.7

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 11 / 13

llvm-py What is llvm-py?

What is llvm-py?

Python bindings for LLVM

Including JIT

Excellent for experimenting and prototyping

Available in Ubuntu, Debian, MacPorts (but may be out of date)

Current version (0.6) works with LLVM 2.7

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 11 / 13

llvm-py What is llvm-py?

What is llvm-py?

Python bindings for LLVM

Including JIT

Excellent for experimenting and prototyping

Available in Ubuntu, Debian, MacPorts (but may be out of date)

Current version (0.6) works with LLVM 2.7

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 11 / 13

llvm-py What is llvm-py?

What is llvm-py?

Python bindings for LLVM

Including JIT

Excellent for experimenting and prototyping

Available in Ubuntu, Debian, MacPorts (but may be out of date)

Current version (0.6) works with LLVM 2.7

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 11 / 13

llvm-py What is llvm-py?

What is llvm-py?

Python bindings for LLVM

Including JIT

Excellent for experimenting and prototyping

Available in Ubuntu, Debian, MacPorts (but may be out of date)

Current version (0.6) works with LLVM 2.7

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 11 / 13

llvm-py llvm-py Internals

llvm-py Internals

Wraps LLVM’s C API as a Python extension module

Extends LLVM C API as it is incomplete

Does not use binding generators (Boost.Python, swig etc)

Public APIs are in Python, use extension module internally

No dependencies other than Python, LLVM

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 12 / 13

llvm-py llvm-py Internals

llvm-py Internals

Wraps LLVM’s C API as a Python extension module

Extends LLVM C API as it is incomplete

Does not use binding generators (Boost.Python, swig etc)

Public APIs are in Python, use extension module internally

No dependencies other than Python, LLVM

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 12 / 13

llvm-py llvm-py Internals

llvm-py Internals

Wraps LLVM’s C API as a Python extension module

Extends LLVM C API as it is incomplete

Does not use binding generators (Boost.Python, swig etc)

Public APIs are in Python, use extension module internally

No dependencies other than Python, LLVM

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 12 / 13

llvm-py llvm-py Internals

llvm-py Internals

Wraps LLVM’s C API as a Python extension module

Extends LLVM C API as it is incomplete

Does not use binding generators (Boost.Python, swig etc)

Public APIs are in Python, use extension module internally

No dependencies other than Python, LLVM

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 12 / 13

llvm-py llvm-py Internals

llvm-py Internals

Wraps LLVM’s C API as a Python extension module

Extends LLVM C API as it is incomplete

Does not use binding generators (Boost.Python, swig etc)

Public APIs are in Python, use extension module internally

No dependencies other than Python, LLVM

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 12 / 13

Thanks References and Thanks

Thanks!

Thanks for listening!

LLVM: http://www.llvm.org/

llvm-py: http://www.mdevan.org/llvm-py/

Must read: Steven S. Muchnick. Advanced Compiler Design &
Implementation.

Me: Mahadevan R, mdevan@mdevan.org, http://www.mdevan.org/

Mahadevan R llvm-py: Writing Compilers Using Python September 8, 2010 13 / 13

http://www.llvm.org/
http://www.mdevan.org/llvm-py/
http://www.mdevan.org/

	Compilers
	What is a Compiler?
	Inside a Compiler
	Passes, Optimization and Code Generation
	The Frontend and The Backend

	LLVM
	What is LLVM?
	LLVM Highlights
	The LLVM IR
	A Word About clang

	llvm-py
	What is llvm-py?
	llvm-py Internals

	Thanks
	References and Thanks

