
Algorithms in Python
Release 0.1

O.R.Senthil Kumaran

September 25, 2009

CONTENTS

1 What makes Python suitable? 1
1.1 Study of Algorithms is one of fundamental requirements in CS Education. . . 2
1.2 Knowing about Algorithms is going to help Programmers. 2
1.3 Unfortunately, in using traditional languages like C,C++ a lot of time is spent

in understanding the syntax, semantics and program design that the idea of
algorithm is overshadowed. 2

1.4 Well, it can be argued that once a person becomes familiar with language syn-
tax then algorithms using that language is easy. True. 2

1.5 But algorithm learning is language agnostic, that is why _they_ do it in pseudo
code. 2

1.6 But you see, Python is so close to pseudo-code, so close to english and so so
natural for anything... well, most natural for learning algorithms. 2

1.7 Because it is easy to learn, easy to use and very easy to test your implementa-
tion and enhance your understanding. 2

2 Algorithm Analysis 3
2.1 Asymptote . 3

3 Numbers, Prime Numbers. 5
3.1 Prime Numbers have exactly two factors 1 and itself. 5
3.2 Eratosthenes invented a sieve that would drain out composite numbers and

give the primes. 5
3.3 This is an interesting algorithm. It is maintaining a dictionary of the nearest

composite numbers and the smallest prime. 6
3.4 You may want to print out the variables at diffent point to see it (If you dont

get it in the first shot) . 6

4 To Sort or Not to Sort. 7
4.1 Computers spend more amount of time sorting than anything else. 7
4.2 It makes sense to know the sorting algorithm when doing algorithm intensive

work or participating in any coding contest. 7
4.3 It fun! Almost magical, that same thing done in slightly different way produce

so many different results. 7

5 Bogosort 9
5.1 In-effective sorting algorithm . 9

i

5.2 Used for Educational purposes . 9
5.3 Complexity Analysis . 9

6 Insertion Sort 11
6.1 Start with the second element in the list and insert it at the correct position

before it. 11
6.2 Algorithm Analysis . 11

7 Selection Sort 13
7.1 Select the smallest from the rest and swap . 13
7.2 Algorithm Analysis . 13

8 shell sort 15
8.1 Is like an insertion sort on an almost sorted list traversing a longer distance. . . 15
8.2 Algorithm Analysis . 15

9 Quick Sort 17
9.1 Algorithm Analysis . 17

10 merge sort 19
10.1 Algorithm Analysis . 20

11 Bubble Sort 21
11.1 Algorithm Analysis . 21

12 bisect module 23
12.1 Inserting elements into a list in a sorted order. 23
12.2 This can be much more efficient than repeatedly sorting a list 23
12.3 Or Explicitly sorting a large list after it is constructed. 23

13 Run time Analysis 25
13.1 Let us look at the Running time of various algorithms 25
13.2 Toy around with the files py31/runtimeanalysis.py py26/runtimeanalysis.py . . 25

14 Python’s Internal Sort 27
14.1 timsort . 27
14.2 Exploits the patterns in data, Wickedly fast on partially or already sorted list. . 27
14.3 non-recursive adaptive stable natural mergesort / binary insertion sort hybrid . 27
14.4 In a nutshell, the main routine marches over the array once, left to right, alter-

nately identifying the next run, then merging it into the previous runs “intelli-
gently”. 27

14.5 Java’s sort modified to use timsort. 27

15 Representing Graphs 29
15.1 Graphs are basically dictionaries with keys as nodes and values as the con-

nected nodes. 29
15.2 Directed Graph can also be reprented as class. With common graph operations

as methods . 29
15.3 Directed Graph . 29
15.4 Weighted Graph . 29

ii

15.5 Graph Class . 30

16 Path Finding Algorithms 31
16.1 Good examples for Recursion . 31

17 Resources 33

18 Algorithms Related Resources 35

19 Thanks! 37

iii

iv

1

Algorithms in Python, Release 0.1

CHAPTER

ONE

WHAT MAKES PYTHON SUITABLE?

1.1 Study of Algorithms is one of fundamental require-
ments in CS Education.

1.2 Knowing about Algorithms is going to help Pro-
grammers.

1.3 Unfortunately, in using traditional languages like
C,C++ a lot of time is spent in understanding the
syntax, semantics and program design that the idea
of algorithm is overshadowed.

1.4 Well, it can be argued that once a person becomes
familiar with language syntax then algorithms using
that language is easy. True.

1.5 But algorithm learning is language agnostic, that is
why _they_ do it in pseudo code.

1.6 But you see, Python is so close to pseudo-code,
so close to english and so so natural for anything...
well, most natural for learning algorithms.

1.7 Because it is easy to learn, easy to use and very
easy to test your implementation and enhance your
understanding.

2 Chapter 1. What makes Python suitable?

CHAPTER

TWO

ALGORITHM ANALYSIS

2.1 Asymptote

A line which approaches nearer to some curve than assignable distance, but, though
infinitely extended, would never meet it. Asymptotes may be straight lines or
curves. A rectilinear asymptote may be conceived as a tangent to the curve at
an infinite distance. [1913 Webster]

3

Algorithms in Python, Release 0.1

4 Chapter 2. Algorithm Analysis

CHAPTER

THREE

NUMBERS, PRIME NUMBERS.

• Does that sound Bond, James Bond. Prime numbers are indeed James Bond of Numbers.

• Let us start with a simple algorithm and look at the python code.

3.1 Prime Numbers have exactly two factors 1 and it-
self.

3.2 Eratosthenes invented a sieve that would drain out
composite numbers and give the primes.

def eratosthenes():
’’’Yields the sequence of prime numbers via the Sieve of Eratosthenes.’’’
D = {}
q = 2
while True:

p = D.pop(q, None)
if p:

x = p + q
while x in D:

x += p
D[x] = p

else:
D[q*q] = q
yield q

q += 1

Credits: David Eppstein, Alex Martelli

5

Algorithms in Python, Release 0.1

3.3 This is an interesting algorithm. It is maintaining
a dictionary of the nearest composite numbers and
the smallest prime.

3.4 You may want to print out the variables at diffent
point to see it (If you dont get it in the first shot)

6 Chapter 3. Numbers, Prime Numbers.

CHAPTER

FOUR

TO SORT OR NOT TO SORT.

4.1 Computers spend more amount of time sorting than
anything else.

4.2 It makes sense to know the sorting algorithm when
doing algorithm intensive work or participating in
any coding contest.

4.3 It fun! Almost magical, that same thing done in
slightly different way produce so many different re-
sults.

7

Algorithms in Python, Release 0.1

8 Chapter 4. To Sort or Not to Sort.

CHAPTER

FIVE

BOGOSORT

5.1 In-effective sorting algorithm

5.2 Used for Educational purposes

while not InOrder(deck) do Shuffle(deck);

from random import shuffle

Bogo-sort deck in place
while not all(x <= y for x, y in zip(deck, deck[1:])):

shuffle(deck)

5.3 Complexity Analysis

Scenario Complexity
Worst case O(∞)
Best case O(n)
Average case O(n.n!)
Worst case space O(n)

9

Algorithms in Python, Release 0.1

10 Chapter 5. Bogosort

CHAPTER

SIX

INSERTION SORT

6.1 Start with the second element in the list and insert
it at the correct position before it.

def insertionsort(A):
""" Insertion sort in python.
Start with the second element as the key and compare it with the elements
preceding it. If you find the elements greater than key, shift the list one
by one and when you find the element is lesser than key, insert the key at
that position.
"""
for j in range(1, len(A)):

key = A[j]
i = j -1
while (i >= 0) and (A[i] > key):

A[i+1] = A[i]
i = i -1

A[i+1] = key

6.2 Algorithm Analysis

Scenario Complexity
Worst Case O(n2)
Best Case O(n)
Average Case O(n2)
Worst Case Space O(n) total, O(1) auxillary

11

Algorithms in Python, Release 0.1

12 Chapter 6. Insertion Sort

CHAPTER

SEVEN

SELECTION SORT

7.1 Select the smallest from the rest and swap

def selectionsort(A):
for i in range(0, len(A)-1):

min = i
for j in range(i+1, len(A)):

if A[j] < A[min]:
min = j

if not (i == min):
A[i], A[min] = A[min], A[i]

7.2 Algorithm Analysis

Scenario Complexity
Worst Case O(n2)
Best Case O(nlogn)
Average Case O(n logn)
Worst Case Space Varies by implementation

13

Algorithms in Python, Release 0.1

14 Chapter 7. Selection Sort

CHAPTER

EIGHT

SHELL SORT

8.1 Is like an insertion sort on an almost sorted list
traversing a longer distance.

def shellsort(A):
inc = int(round(len(A)/2))
while inc:

for i in range(inc, len(A)):
temp = A[i]
j = i
while ((j >= inc) and (A[j-inc] > temp)):

A[j] = A[j-inc]
j = j - inc

A[j] = temp
inc = int(round(inc/2.2))

8.2 Algorithm Analysis

Scenario Complexity
Worst Case depends on gap seq
Best Case O(n)
Average Case depends on gap seq
Worst Case Space O(n)

15

Algorithms in Python, Release 0.1

16 Chapter 8. shell sort

CHAPTER

NINE

QUICK SORT

import random

def quicksort(A):
lesser = []
greater = []

if len(A) <= 1:
return A

index = random.randint(0,len(A)-1)
pivot = A.pop(index)

for x in A:
if x < pivot:

lesser.append(x)
elif x >= pivot:

greater.append(x)

lesser = quicksort(lesser)
greater = quicksort(greater)

return lesser + [pivot] + greater

9.1 Algorithm Analysis

Scenario Complexity
Worst Case O(n2)
Best Case O(n2)
Average Case O(n2)
Worst Case Space O(n) total, O(1) auxillary

17

Algorithms in Python, Release 0.1

18 Chapter 9. Quick Sort

CHAPTER

TEN

MERGE SORT

import math

def merge(left, right):
result = list()
while (len(left) > 0) and (len(right) > 0):

if left[0] <= right[0]:
result.append(left[0])
left = left[1:]

else:
result.append(right[0])
right = right[1:]

if left:
result.extend(left)

else:
result.extend(right)

return result

def mergesort(m):
left = list()
right = list()
result = list()

if len(m) <= 1:
return m

middle = int(math.ceil(len(m)/2.0))
for x in range(0,middle):

left.append(m[x])
for x in range(middle,len(m)):

right.append(m[x])

left = mergesort(left)
right = mergesort(right)

left_last_item = left[len(left)-1]
right_first_item = right[0]

if left_last_item > right_first_item:

19

Algorithms in Python, Release 0.1

result = merge(left, right)
else:

left.extend(right)
result = left

return result

10.1 Algorithm Analysis

Scenario Complexity
Worst Case O(nlogn)
Best Case O(nlogn)/ O(n)
Average Case O(n logn)
Worst Case Space O(n)

20 Chapter 10. merge sort

CHAPTER

ELEVEN

BUBBLE SORT

“the bubble sort seems to have nothing to recommend it, except a catchy name and the fact that
it leads to some interesting theoretical problems”. Donald Knuth.

def bubblesort(A):
swapped = True
while swapped:

swapped = False
for i in range(len(A)-1):

if A[i] > A[i+1]:
A[i], A[i+1] = A[i+1], A[i]
swapped = True

11.1 Algorithm Analysis

Scenario Complexity
Worst Case O(n2)
Best Case O(n)
Average Case O(n2)
Worst Case Space O(n) total, O(1) auxillary

21

Algorithms in Python, Release 0.1

22 Chapter 11. Bubble Sort

CHAPTER

TWELVE

BISECT MODULE

12.1 Inserting elements into a list in a sorted order.

12.2 This can be much more efficient than repeatedly
sorting a list

12.3 Or Explicitly sorting a large list after it is con-
structed.

"""
The bisect module implements an algorithm for inserting elements into a list in
sorted order. This can be much more efficient than repeatedly sorting a list or
explicitly sorting a large list after it is constructed.
"""

import bisect

def bisectionsort(A):
resultant = []
for elem in A:

pos = bisect.bisect(resultant, elem)
bisect.bisect(resultant, elem)

return resultant

23

Algorithms in Python, Release 0.1

24 Chapter 12. bisect module

CHAPTER

THIRTEEN

RUN TIME ANALYSIS

13.1 Let us look at the Running time of various algo-
rithms

13.2 Toy around with the files py31/runtimeanalysis.py
py26/runtimeanalysis.py

25

Algorithms in Python, Release 0.1

26 Chapter 13. Run time Analysis

CHAPTER

FOURTEEN

PYTHON’S INTERNAL SORT

14.1 timsort

14.2 Exploits the patterns in data, Wickedly fast on par-
tially or already sorted list.

14.3 non-recursive adaptive stable natural mergesort /
binary insertion sort hybrid

14.4 In a nutshell, the main routine marches over the
array once, left to right, alternately identifying the
next run, then merging it into the previous runs
“intelligently”.

14.5 Java’s sort modified to use timsort.

27

Algorithms in Python, Release 0.1

28 Chapter 14. Python’s Internal Sort

CHAPTER

FIFTEEN

REPRESENTING GRAPHS

15.1 Graphs are basically dictionaries with keys as
nodes and values as the connected nodes.

15.2 Directed Graph can also be reprented as class.
With common graph operations as methods

15.3 Directed Graph

H = {’A’: [’C’,’D’],
’B’: [’A’,’D’],
’C’: [’D’,’E’],
’D’: [’E’],
’E’: []
}

15.4 Weighted Graph

29

Algorithms in Python, Release 0.1

W = {’A’:{’C’:2,’D’:6},
’B’:{’A’:3,’D’:8},
’C’:{’E’:5,’D’:7},
’D’:{’E’:-2},
’E’:{}
}

15.5 Graph Class

class Graph:
def __init__(self, g):

self.g = g

def V(self):
return list(self.g.keys())

def Adj(self, v):
return list(self.g[v].keys())

def W(self, v, u):
return self.g[v][u]

30 Chapter 15. Representing Graphs

CHAPTER

SIXTEEN

PATH FINDING ALGORITHMS

16.1 Good examples for Recursion

def find_path(graph, start, end, path=[]):
path = path + [start]
if start == end:

return path
if start not in graph:

return None
for node in graph[start]:

if node not in path:
newpath = find_path(graph, node, end, path)
if newpath: return newpath

return None

def find_shortest_path(graph, start, end, path=[]):
path = path + [start]
if start == end:

return path
if start not in graph:

return None
shortest = None
for node in graph[start]:

if node not in path:
newpath = find_shortest_path(graph, node, end, path)
if newpath:

if not shortest or len(newpath) < len(shortest):
shortest = newpath

return shortest

Source: Guido’s essay.

31

Algorithms in Python, Release 0.1

32 Chapter 16. Path Finding Algorithms

CHAPTER

SEVENTEEN

RESOURCES

• Sieve of Eratosthenes at ActiveState

• Algorithm Education in Python - UC, Irvine

• Guido’s Graph Essay

• Sorting in Python

• Sorting Algorithm - Wikipedia

33

http://code.activestate.com/recipes/117119/
http://www.ece.uci.edu/~chou/py02/python.html
http://www.python.org/doc/essays/graphs.html
http://wiki.python.org/moin/HowTo/Sorting
http://en.wikipedia.org/wiki/Sorting_algorithm

Algorithms in Python, Release 0.1

34 Chapter 17. Resources

CHAPTER

EIGHTEEN

ALGORITHMS RELATED RESOURCES

• itertools module in Python Standard Library

• Easy AI with Python by Raymond Hettinger

• David Eppstein’s Python Algorithms and Data Structures

35

http://docs.python.org/3.1/library/itertools.html
http://us.pycon.org/2009/conference/schedule/event/71/
http://www.ics.uci.edu/~eppstein/PADS/

Algorithms in Python, Release 0.1

36 Chapter 18. Algorithms Related Resources

CHAPTER

NINETEEN

THANKS!

• O.R.Senthil Kumaran

• Presentation Slides and Source Files

37

mailto:orsenthil@gmail.com
http://uthcode.googlecode.com/files/pyconindia2009.zip

	What makes Python suitable?
	Study of Algorithms is one of fundamental requirements in CS Education.
	Knowing about Algorithms is going to help Programmers.
	Unfortunately, in using traditional languages like C,C++ a lot of time is spent in understanding the syntax, semantics and program design that the idea of algorithm is overshadowed.
	Well, it can be argued that once a person becomes familiar with language syntax then algorithms using that language is easy. True.
	But algorithm learning is language agnostic, that is why _they_ do it in pseudo code.
	But you see, Python is so close to pseudo-code, so close to english and so so natural for anything... well, most natural for learning algorithms.
	Because it is easy to learn, easy to use and very easy to test your implementation and enhance your understanding.

	Algorithm Analysis
	Asymptote

	Numbers, Prime Numbers.
	Prime Numbers have exactly two factors 1 and itself.
	Eratosthenes invented a sieve that would drain out composite numbers and give the primes.
	This is an interesting algorithm. It is maintaining a dictionary of the nearest composite numbers and the smallest prime.
	You may want to print out the variables at diffent point to see it (If you dont get it in the first shot)

	To Sort or Not to Sort.
	Computers spend more amount of time sorting than anything else.
	It makes sense to know the sorting algorithm when doing algorithm intensive work or participating in any coding contest.
	It fun! Almost magical, that same thing done in slightly different way produce so many different results.

	Bogosort
	In-effective sorting algorithm
	Used for Educational purposes
	Complexity Analysis

	Insertion Sort
	Start with the second element in the list and insert it at the correct position before it.
	Algorithm Analysis

	Selection Sort
	Select the smallest from the rest and swap
	Algorithm Analysis

	shell sort
	Is like an insertion sort on an almost sorted list traversing a longer distance.
	Algorithm Analysis

	Quick Sort
	Algorithm Analysis

	merge sort
	Algorithm Analysis

	Bubble Sort
	Algorithm Analysis

	bisect module
	Inserting elements into a list in a sorted order.
	This can be much more efficient than repeatedly sorting a list
	Or Explicitly sorting a large list after it is constructed.

	Run time Analysis
	Let us look at the Running time of various algorithms
	Toy around with the files py31/runtimeanalysis.py py26/runtimeanalysis.py

	Python's Internal Sort
	timsort
	Exploits the patterns in data, Wickedly fast on partially or already sorted list.
	non-recursive adaptive stable natural mergesort / binary insertion sort hybrid
	In a nutshell, the main routine marches over the array once, left to right, alternately identifying the next run, then merging it into the previous runs ``intelligently''.
	Java's sort modified to use timsort.

	Representing Graphs
	Graphs are basically dictionaries with keys as nodes and values as the connected nodes.
	Directed Graph can also be reprented as class. With common graph operations as methods
	Directed Graph
	Weighted Graph
	Graph Class

	Path Finding Algorithms
	Good examples for Recursion

	Resources
	Algorithms Related Resources
	Thanks!

