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CHAPTER

ONE

WHAT MAKES PYTHON SUITABLE?

1.1 Study of Algorithms is one of fundamental require-
ments in CS Education.

1.2 Knowing about Algorithms is going to help Pro-
grammers.

1.3 Unfortunately, in using traditional languages like
C,C++ a lot of time is spent in understanding the
syntax, semantics and program design that the idea
of algorithm is overshadowed.

1.4 Well, it can be argued that once a person becomes
familiar with language syntax then algorithms using
that language is easy. True.

1.5 But algorithm learning is language agnostic, that is
why _they_ do it in pseudo code.

1.6 But you see, Python is so close to pseudo-code,
so close to english and so so natural for anything...
well, most natural for learning algorithms.

1.7 Because it is easy to learn, easy to use and very
easy to test your implementation and enhance your
understanding.

2 Chapter 1. What makes Python suitable?



CHAPTER

TWO

ALGORITHM ANALYSIS

2.1 Asymptote

A line which approaches nearer to some curve than assignable distance, but, though
infinitely extended, would never meet it. Asymptotes may be straight lines or
curves. A rectilinear asymptote may be conceived as a tangent to the curve at
an infinite distance. [1913 Webster]
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4 Chapter 2. Algorithm Analysis



CHAPTER

THREE

NUMBERS, PRIME NUMBERS.

• Does that sound Bond, James Bond. Prime numbers are indeed James Bond of Numbers.

• Let us start with a simple algorithm and look at the python code.

3.1 Prime Numbers have exactly two factors 1 and it-
self.

3.2 Eratosthenes invented a sieve that would drain out
composite numbers and give the primes.

def eratosthenes():
’’’Yields the sequence of prime numbers via the Sieve of Eratosthenes.’’’
D = {}
q = 2
while True:

p = D.pop(q, None)
if p:

x = p + q
while x in D:

x += p
D[x] = p

else:
D[q*q] = q
yield q

q += 1

Credits: David Eppstein, Alex Martelli

5
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3.3 This is an interesting algorithm. It is maintaining
a dictionary of the nearest composite numbers and
the smallest prime.

3.4 You may want to print out the variables at diffent
point to see it (If you dont get it in the first shot)

6 Chapter 3. Numbers, Prime Numbers.



CHAPTER

FOUR

TO SORT OR NOT TO SORT.

4.1 Computers spend more amount of time sorting than
anything else.

4.2 It makes sense to know the sorting algorithm when
doing algorithm intensive work or participating in
any coding contest.

4.3 It fun! Almost magical, that same thing done in
slightly different way produce so many different re-
sults.

7
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8 Chapter 4. To Sort or Not to Sort.



CHAPTER

FIVE

BOGOSORT

5.1 In-effective sorting algorithm

5.2 Used for Educational purposes

while not InOrder(deck) do Shuffle(deck);

from random import shuffle

# Bogo-sort deck in place
while not all(x <= y for x, y in zip(deck, deck[1:])):

shuffle(deck)

5.3 Complexity Analysis

Scenario Complexity
Worst case O(∞)
Best case O(n)
Average case O(n.n!)
Worst case space O(n)

9
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10 Chapter 5. Bogosort



CHAPTER

SIX

INSERTION SORT

6.1 Start with the second element in the list and insert
it at the correct position before it.

def insertionsort(A):
""" Insertion sort in python.
Start with the second element as the key and compare it with the elements
preceding it. If you find the elements greater than key, shift the list one
by one and when you find the element is lesser than key, insert the key at
that position.
"""
for j in range(1, len(A)):

key = A[j]
i = j -1
while (i >= 0) and (A[i] > key):

A[i+1] = A[i]
i = i -1

A[i+1] = key

6.2 Algorithm Analysis

Scenario Complexity
Worst Case O(n2)
Best Case O(n)
Average Case O(n2)
Worst Case Space O(n) total, O(1) auxillary

11
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12 Chapter 6. Insertion Sort



CHAPTER

SEVEN

SELECTION SORT

7.1 Select the smallest from the rest and swap

def selectionsort(A):
for i in range(0, len(A)-1):

min = i
for j in range(i+1, len(A)):

if A[j] < A[min]:
min = j

if not (i == min):
A[i], A[min] = A[min], A[i]

7.2 Algorithm Analysis

Scenario Complexity
Worst Case O(n2)
Best Case O(nlogn )
Average Case O(n logn )
Worst Case Space Varies by implementation

13
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14 Chapter 7. Selection Sort



CHAPTER

EIGHT

SHELL SORT

8.1 Is like an insertion sort on an almost sorted list
traversing a longer distance.

def shellsort(A):
inc = int(round(len(A)/2))
while inc:

for i in range(inc, len(A)):
temp = A[i]
j = i
while ((j >= inc) and (A[j-inc] > temp)):

A[j] = A[j-inc]
j = j - inc

A[j] = temp
inc = int(round(inc/2.2))

8.2 Algorithm Analysis

Scenario Complexity
Worst Case depends on gap seq
Best Case O(n)
Average Case depends on gap seq
Worst Case Space O(n)

15
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16 Chapter 8. shell sort



CHAPTER

NINE

QUICK SORT

import random

def quicksort(A):
lesser = []
greater = []

if len(A) <= 1:
return A

index = random.randint(0,len(A)-1)
pivot = A.pop(index)

for x in A:
if x < pivot:

lesser.append(x)
elif x >= pivot:

greater.append(x)

lesser = quicksort(lesser)
greater = quicksort(greater)

return lesser + [pivot] + greater

9.1 Algorithm Analysis

Scenario Complexity
Worst Case O(n2)
Best Case O(n2)
Average Case O(n2)
Worst Case Space O(n) total, O(1) auxillary

17



Algorithms in Python, Release 0.1

18 Chapter 9. Quick Sort



CHAPTER

TEN

MERGE SORT

import math

def merge(left, right):
result = list()
while (len(left) > 0) and (len(right) > 0):

if left[0] <= right[0]:
result.append(left[0])
left = left[1:]

else:
result.append(right[0])
right = right[1:]

if left:
result.extend(left)

else:
result.extend(right)

return result

def mergesort(m):
left = list()
right = list()
result = list()

if len(m) <= 1:
return m

middle = int(math.ceil(len(m)/2.0))
for x in range(0,middle):

left.append(m[x])
for x in range(middle,len(m)):

right.append(m[x])

left = mergesort(left)
right = mergesort(right)

left_last_item = left[len(left)-1]
right_first_item = right[0]

if left_last_item > right_first_item:

19
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result = merge(left, right)
else:

left.extend(right)
result = left

return result

10.1 Algorithm Analysis

Scenario Complexity
Worst Case O(nlogn )
Best Case O(nlogn)/ O(n)
Average Case O(n logn )
Worst Case Space O(n)

20 Chapter 10. merge sort



CHAPTER

ELEVEN

BUBBLE SORT

“the bubble sort seems to have nothing to recommend it, except a catchy name and the fact that
it leads to some interesting theoretical problems”. Donald Knuth.

def bubblesort(A):
swapped = True
while swapped:

swapped = False
for i in range(len(A)-1):

if A[i] > A[i+1]:
A[i], A[i+1] = A[i+1], A[i]
swapped = True

11.1 Algorithm Analysis

Scenario Complexity
Worst Case O(n2)
Best Case O(n)
Average Case O(n2)
Worst Case Space O(n) total, O(1) auxillary

21
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22 Chapter 11. Bubble Sort



CHAPTER

TWELVE

BISECT MODULE

12.1 Inserting elements into a list in a sorted order.

12.2 This can be much more efficient than repeatedly
sorting a list

12.3 Or Explicitly sorting a large list after it is con-
structed.

"""
The bisect module implements an algorithm for inserting elements into a list in
sorted order. This can be much more efficient than repeatedly sorting a list or
explicitly sorting a large list after it is constructed.
"""

import bisect

def bisectionsort(A):
resultant = []
for elem in A:

pos = bisect.bisect(resultant, elem)
bisect.bisect(resultant, elem)

return resultant

23



Algorithms in Python, Release 0.1

24 Chapter 12. bisect module



CHAPTER

THIRTEEN

RUN TIME ANALYSIS

13.1 Let us look at the Running time of various algo-
rithms

13.2 Toy around with the files py31/runtimeanalysis.py
py26/runtimeanalysis.py

25
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26 Chapter 13. Run time Analysis



CHAPTER

FOURTEEN

PYTHON’S INTERNAL SORT

14.1 timsort

14.2 Exploits the patterns in data, Wickedly fast on par-
tially or already sorted list.

14.3 non-recursive adaptive stable natural mergesort /
binary insertion sort hybrid

14.4 In a nutshell, the main routine marches over the
array once, left to right, alternately identifying the
next run, then merging it into the previous runs
“intelligently”.

14.5 Java’s sort modified to use timsort.

27
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28 Chapter 14. Python’s Internal Sort



CHAPTER

FIFTEEN

REPRESENTING GRAPHS

15.1 Graphs are basically dictionaries with keys as
nodes and values as the connected nodes.

15.2 Directed Graph can also be reprented as class.
With common graph operations as methods

15.3 Directed Graph

H = {’A’: [’C’,’D’],
’B’: [’A’,’D’],
’C’: [’D’,’E’],
’D’: [’E’],
’E’: []
}

15.4 Weighted Graph
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W = {’A’:{’C’:2,’D’:6},
’B’:{’A’:3,’D’:8},
’C’:{’E’:5,’D’:7},
’D’:{’E’:-2},
’E’:{}
}

15.5 Graph Class

class Graph:
def __init__(self, g):

self.g = g

def V(self):
return list(self.g.keys())

def Adj(self, v):
return list(self.g[v].keys())

def W(self, v, u):
return self.g[v][u]

30 Chapter 15. Representing Graphs



CHAPTER

SIXTEEN

PATH FINDING ALGORITHMS

16.1 Good examples for Recursion

def find_path(graph, start, end, path=[]):
path = path + [start]
if start == end:

return path
if start not in graph:

return None
for node in graph[start]:

if node not in path:
newpath = find_path(graph, node, end, path)
if newpath: return newpath

return None

def find_shortest_path(graph, start, end, path=[]):
path = path + [start]
if start == end:

return path
if start not in graph:

return None
shortest = None
for node in graph[start]:

if node not in path:
newpath = find_shortest_path(graph, node, end, path)
if newpath:

if not shortest or len(newpath) < len(shortest):
shortest = newpath

return shortest

Source: Guido’s essay.
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32 Chapter 16. Path Finding Algorithms



CHAPTER

SEVENTEEN

RESOURCES

• Sieve of Eratosthenes at ActiveState

• Algorithm Education in Python - UC, Irvine

• Guido’s Graph Essay

• Sorting in Python

• Sorting Algorithm - Wikipedia

33
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34 Chapter 17. Resources



CHAPTER

EIGHTEEN

ALGORITHMS RELATED RESOURCES

• itertools module in Python Standard Library

• Easy AI with Python by Raymond Hettinger

• David Eppstein’s Python Algorithms and Data Structures

35

http://docs.python.org/3.1/library/itertools.html
http://us.pycon.org/2009/conference/schedule/event/71/
http://www.ics.uci.edu/~eppstein/PADS/
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36 Chapter 18. Algorithms Related Resources



CHAPTER

NINETEEN

THANKS!

• O.R.Senthil Kumaran

• Presentation Slides and Source Files
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