Driving Development Using
Examples

Sai Venkatakrishnan

Developer in Test, Thoughtworks
http://developer-in-test.blogspot.com

Fork me at - http://github.com/saivenkat
Follow me at - http://twitter.com/sai_venkat

http://github.com/saivenkat

Introduction

= Problems we are trying to solve.

How to build the right thing?

What do we get out of this?

Gotchas

Coding time :)

Are we building the thing right as
well building the right thing?

i
Fa. ! ':-

. /7

TESTING

| FIND YOUR LACK OF TESTS DISTURBING.

Intention and Implementation

-

iy

Y A “

)‘.

. ‘il
==y

What operatiens installed

Broken Language

oo REELN T
— i EE F=0uLWv

Please note the mistake
of shoes.

ZE(FXFZEIL TIZ

AL TLTI==L >,

Broken Language

Team doesn't use a single language (Ubiquitous
language).

Like Telephone or Chinese Whispers game
People interpret things in their own way

Things lost 1n translation

Is obvious really obvious?

Small misunderstanding can cost a lot
of money

Mars Climate Orbiter Crash

e Total project cost was $327.6
million

* The metric/imperial mix-up
that destroyed the craft was
caused by a software error back
on Earth.

e The software was working in
pounds force, while the
spacecraft expected figures in
newtons; 1 pound force equals
approximately 4.45 newtons.

Are we there yet?

Is there a common definition of done?

m—
——
—
—
—
—
—

; 5 .

O 5 VAN R WE THER YETli

Evolution of

codebase

Production Release after manual testing
(Scripted Testing)

Knowledge Lost in Time

How many points are there?

What do we need to develop?

= (Client name - Nile book store
= A famous web bookstore. Offer during 2nd year celebration.

= Any customer who has been buying for past 2 years, living in
US and bought books for worth 500 $ will be awarded 300$
gift coupon.

= Any customer who has been buying for past 2 year and a non
US customer and bought books worth 300 $ will get 250 $
worth gift coupons.

= Any customer who has been buying for past 1 year, and living
in US and bought books worth 1000 $ will get 200 $ worth
gift coupons.

How to build software that matter?

Requirement — Test Paradox

As formality increases, tests and requirements
become indistinguishable. At the limits tests and
requirements are equivalent — Uncle Bob

Tests as Requirements

Distill

Pevelop

Specification workshop

Discuss and distill requirements, identify gaps, expand
examples and get common definition of done

Should include product owner, domain expert, tester,
developer.. or the whole team :)

Product owner describes his requirement and system beavior in
form of concrete examples

Team questions and discusses the requirements, find alternative
ways, and edge cases

Ends when team reaches an agreement on sufficient number of
examples of happy path and edge cases

Specification workshop

= <Picture of table with team discussing>

Specification Development

The tester with developer creates fixtures to turn the examples
into executable acceptance tests.

The tests 1nitially fail, since the feature 1s not yet implemented.

The tests may target the scriptable interface (API) or user
interface (or both).

Only the necessary functionality to pass the tests 1s
implemented (and no more).

This doesn't in anyway change the normal TDD cycle.

Demonstrate

= A feature which passes the acceptance test has just
crossed half the bridge.

= More tests in form on Exploratory testing,
performance, usability and more are needed

= A feature 1s not done until it 1s deployed and used in
production (Continuous Deployment)

What do we get out of this?

Executable and living Specifications

Better test scripts run as part of build (Side effect)

Shared understanding of domain and ubiquitous
language

Better understanding of intricasies of domain
(Helps in Domain Driven Design)

Better clarity on what we are building and are we
doing it right?

Better consensus on when we are done

Gotchas

Existing specifications are often changed
= You're tied to an implementation
Lots of "execute" or imperative commands
= You're writing a script
Complicated instrumentation
= You're testing too much in one go
Complicated fixture code
= Your fixture code 1s verbose and hard to follow
Examples all have the same structure

= Your examples are too generic

Too much automation

Test Automation Pyramid

metrics,coverage, &
statistics

customer
acceptance tests

integration &
functional tests

A
|
o

£
O
S
e
@
&
{2
7
=
O

@)
=
(&)
1Y)
e
D)
O
O
Q
v

developer tests

Robot Framework Introduction

Test Automation Framework

Test Data

Robot Framewaork

Test Libraries

System Under Test

e Implemented using Python
language
e Python is the recommended
language to create test
libraries and otherwise extend
the framework
 Runs on JVM on top of Jython
e Possible to implement test
libraries using Java

Keyword Driven Approach

e [hton | Arunes [Aan

Create Yalid Lser FL1 sl

Create walid Liser

Status Should Be

Data Driven Approach

Test Case Expected error
message

Too short password Creating user with invalid passwaord should fail | abCDa FIPWD INVALID
LEIJHTH.'

Too [ong password Creating user with invalid passward should fail FPWD INVALID
LENGTH]
Fassword without Iowercase Creating user with invalid password should fail | 1250DEFG EIPWD INVALID

letters CONTENT]
Fassword without ca M ital letters | Creatin 0 User with insalic pAs W0 rd should fail 4 ||:| MO ALID
CONTENT}
Fassword without numbers Creating user with invalid password should fail | AbCdEfGh FIPWD INVALID
CONTENT]
Fassward with special Creating user with invalid passward should fail | abCDa6+ FPWD INVALID
characters CONTENT}

Fixture Implementation

import o=
import sv=s

class LoginLibrary:

def

==word)

~d(zelf, usernawe, old pwd, new pwd):

and (' change—password' , usernasane, old pwd, new puwd)

=1f, username, password) :

username, password)

but
Status

Higher Level Keyword

Clear login database

Creating user with invalid passw

shiould fail

Aftempt to login with
credentials
atatus should be Logged In

Variables

Tagging

Free metadata to categorize test cases
Statistics by tags collected automatically

Select test cases to be executed
= --include and --exclude options

Specity which test cases are considered critical

Clear Reports

Login Tests Test Report R

20080613 15 3908 GMT +0200
1 Frurnibin 3 swcandd go

Status: b critical tests failed Sunm‘l.'r Information
Start Thme: - 3

End Timei
Elapsed Time:

Status:]

Documentation: Demo te lobeot Framemork using Selenium test borary
Start Time: 0

Enmd Time:

Elapsed Time:

[statistcbysute [Total] Pass| Fail | Graph
leginTests 00 || 4| 5 |[SSS—
igher Level ogin 13 |5 | o | eo—

e [0 [¢ [—
l.5imgle Logln | 1 [1 | o |

EZ

Login Tests

Lh.Higher Level Valld Lagin Tests
Login

| Higher Level Login

Linvald Leain bl e by e el I e e Ll
b L | .
- . I.h.Highest Level
Liimvalid Usermame egressio il) Legln

Lidmvalid Password

i dmvalid Ueermame

Similar Tools

= Fit and FitNesse
= Concordion
= BDD Frameworks

" should_dsl - http://github.com/hugobr/should-dsl

= Behavior - http://pypi.python.org/pypi/Behaviour/0.1a4

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

