

Quick Quick
Multitouch Apps Multitouch Apps
using kivy and using kivy and
PythonPython

About Me!About Me!

Python and Kivy

+

Setting up Kivy...

1) in Linux

2) in Windows

3) Mac OSX

Hello World in Kivy :)

Controlling the Environment

Many environment variables are available to control the
initialization and behavior of Kivy.

$ KIVY_TEXT=cairo python main.py

Or set the variables before importing kivy:

import os
os.environ['KIVY_TEXT'] = 'cairo'
import kivy

Controlling the Environment

→ To force default config, use
KIVY_USE_DEFAULTCONFIG

→ KIVY_WINDOW: pygame

→ KIVY_TEXT: pil, cairo, pygame

→ KIVY_VIDEO: gstreamer, pyglet, ffmpeg

→ KIVY_AUDIO: gstreamer, pygame

→ KIVY_IMAGE: pil, pygame

Controlling the Environment

→ KIVY_CAMERA: gstreamer, opencv, videocapture

→ KIVY_SPELLING: enchant, osxappkit

→ KIVY_CLIPBOARD: pygame, dummy

Configuring Kivy

The location of the configuration file is in:

<HOME_DIRECTORY>/.kivy/config.ini

If your user is named “karan”, the file will be located at:

Windows: C:\Users\karan\.kivy\config.ini
MacOSX: /Users/karan/.kivy/config.ini
Linux: /home/karan/.kivy/config.ini

Understanding the config file: read docs on kivy.config

Architecture of Kivy

1) Core Providers and Input Providers
2) Graphics
3) Core
4) UIX (Widgets & Layouts)
5) Modules
6) Input Events (Touches)
7) Widgets and Event Dispatching

Core Providers and Input Providers

We try to abstract from basic tasks such as
opening a window, displaying images and
text, playing audio, getting images from a
camera, spelling correction and so on.

We call these core tasks.

Core providers allow us to accomplish these
core tasks!

Core Providers and Input Providers

→ An input provider is a piece of code that
adds support for a specific input device, such
as Apple’s trackpads, TUIO or a mouse
emulator.

→ If you need to add support for a new input
device, you can simply provide a new class
that reads your input data from your device
and transforms them into Kivy basic events.

Graphics

→ Kivy’s graphics API is our abstraction of
OpenGL. On the lowest level, Kivy issues
hardware-accelerated drawing commands
using OpenGL.

→ All of kivy's widgets themselves use this
graphics API, which is implemented on the C
level for performance reasons.

Graphics

→ The graphics API can automatically
optimise the graphics commands issued by
your kivy app.

→ You can, of course, still use raw OpenGL
commands if you prefer that. :)

→ Targeted version is OpenGL 2.0 ES(GLES
2
)

→ use this for cross-platform compatibility

Core

Clock
You can use the clock to schedule timer
events. Both one-shot timers and periodic
timers are supported.

Cache
If you need to cache something that you use
often, you can use our class for that instead of
writing your own.
interface description.

Core

Gesture Detection
We ship a simple gesture recognizer that you
can use to detect various kinds of strokes,
such as circles or rectangles. You can train it to
detect your own strokes.

Core

Kivy Language
The kivy language is used to easily and
efficiently describe user interfaces.

Properties
These are not the normal properties that you
may know from python. It is our own properties
class that links your widget code with the user

UIX

Widgets

→ Widgets are user interface elements that
you add to your program to provide some kind
of functionality.

→ They may or may not be visible. Examples
would be a file browser, buttons, sliders, lists
and so on.

→ Widgets receive MotionEvents.

UIX

Layouts

→ You use layouts to arrange widgets.
It is of course possible to calculate your
widgets’ positions yourself, but often it is more
convenient to use one of our ready made
layouts.

→ Examples would be Grid Layouts or Box
Layouts.

→ You can also nest layouts.

Modules

→ Similar to addons for broswers

→ we can add new functionality in old kivy
apps

→ ex. FPS counter, exit button overlay

Input Events (Touches)

Down

→ A touch is down only once, at the very
moment where it first appears.

Move

→ A touch can be in this state for a potentially
unlimited time.

→ A ‘Move’ happens whenever the 2D
position of a touch changes.

Input Events (Touches)

Up

→ A touch goes up at most once, or never.

→ obviously you wouldn't want to keep on
pressing forever?

Widgets and Event Dispatching

Tree Based Widget Strucutre

→ Widgets from a hierarchy just like a tree

→ There is a root widget and children widgets

→ similar to other popular GUI hierarchy
approaches...ex. Qt

Widgets and Event Dispatching

→ Is a widget hungry?

→ Digest and Pass of Events == just like us?

→ Flow of events along the Tree from Root to
children

Widgets and Event Dispatching

Your First Kivy Widget :D

Lets have some more FUN! :D

Manipulating the Widget Tree

The tree can be manipulated with 3 methods:

add_widget(): add a widget as a child
remove_widget(): remove a widget from the
children list
clear_widgets(): remove all children from a widget

Events

You have 2 types of events living in Kivy:

→ Clock events: if you want to call a function X
times per seconds, or if you want to call a function
later. ex. Similar to timers in Qt

→ Widget events: if you want to call a function
where something change in the widget, or attach a
function to a widget specific event. e.x. Similar to
signals in Qt

Clock Events

clock.schedule_interval(fn_name, time to call the
fn)

clock.unschedule(fn_name) == to unschedule a
previously scheduled event

Or return False in fn_name to automatically
unschedule

clock.schedule_once(fn_name, time to call the fn)

Clock Events for Trigering

triggering can be achieved with:

But this is expensive, since no matter whether
an event has been scheduled or not we are
unscheduling it still...

Clock Events for Trigering

triggering can be achieved with:

But this is expensive, since no matter whether
an event has been scheduled or not we are
unscheduling it still...

Clock Events for Trigering

better way to implemnent triggers =
Clock.create_trigger(my_callback)

later on

trigger()

Widget Events

A widget have 2 types of events:

Property event: if your widget change of pos or
size, you’ll have an event fired, And we can also
define our own custom properties too

Widget defined event: a Button will have even fired
when it’s pressed or released.ex. Button pressed or
released

Input management

→ Input Event Architecture

→ Motion Profiles

→ Touch Events as specialized motion events

→ Touch Shapes

→ Double Tap

→ Grabbing Touches and Limitations

Kivy Language

→ Used for interface specification of kivy apps

→ can use .kv files to generate User Interfaces...

→ example?

Kivy on Android! Yay! :)

Kivy on Android!

→ how to run on Android?

→ how to package for Android?

→ Debugging on Android?

→ Supported Devices?

Kivy Packaging?

→ Kivy Packaging on Other Platforms?

→ Windows

→ Linux

→ MacOSX

Puzzled?

ANY DOUBTS?
Apart from me, go BUG these people!

Mailing Lists, kivy-users and kivy-dev on google groups

And

#kivy on irc.freenode.net

Finally!

The End :)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

