
Python threads: Dive into GIL!

PyCon 2011

Pune Sept 16-18

Vishal Kanaujia and Chetan Giridhar

Summary

• Benefit of multi-threaded application grows

with ubiquity of multi-core architecture that

potentially can simultaneously run multiple

threads of execution.

• Python supports multi-threaded applications • Python supports multi-threaded applications

and developers are flocking to realize the

assured gain of multiple cores with threaded

applications.

• Unfortunately, Python has significant

bottleneck for multi-threading.

Summary…

• Any thread in CPython interpreter requires a

special lock (GIL) which results in serial, rather

than parallel execution of multi-threaded

applications, irrespective of cores availability

and design techniques.and design techniques.

• This talk focuses on the problem, dissects the

root cause and its implications.

A jaw dropping example!
• A simple python program – single function performing two

operations for 10000000 iterations:

– Divides 2 random numbers from specified range

– Multiplies 2 random numbers from specified range

– Called as two different threads on:

• Single Core • Single Core

• Dual Core

22% dip in Execution Time Increased User Time by 2 secs.

0

20

40

60

80

Single Core Dual Core

Execution Time

Execution Time

0

1

2

3

4

Single Core Dual Core

User Time

User Time

Python v2.7 Execution Time User Time

Single Core 55 s 1.108 s

Dual Core 67 s 3.071 s

Threads: Fundamentals

• Fundamental to a multi-tasking application

• Smallest possible, independent unit of execution

• Light weight processes (resource sharing
including address space)including address space)

• Concurrent execution

� Uni-core processor: Single thread at a time; Time
division multiplexing

� Multi-core processor: Threads run at the same time

• CPU bound and I/O bound

Python Threads

• Real system threads (POSIX/ Windows
threads)

• Python VM has no intelligence of thread
management (priorities, pre-emption, and so management (priorities, pre-emption, and so
on)

• Native operative system supervises thread
scheduling

• Python interpreter just does the per-thread
bookkeeping.

Python threads: internals

• Only one thread can be active in Python interpreter

• Each ‘running’ thread requires exclusive access to data
structures in Python interpreter

• Global interpreter lock (GIL) provides this exclusive
synchronizationsynchronization

• This lock is necessary mainly because CPython's
memory management is not thread-safe.

• Result

– A thread waits if another thread is holding the GIL, even on
a multi-core processor! So, threads run sequentially,
instead of parallel!

Python threads
• How do Python manages GIL?

– Python interpreter regularly performs a check

• A check is done after ‘n’ ticks.

checkTicks >0

– It maps to ‘n’ number of Python VM’s byte-code instructions

– A global counter; Ticks decrement as a thread executes

• As soon as ticks reach zero:

– the active thread releases and reacquires the GIL

– Signal handling (only in the main thread)

• Effectively, ticks dictate allowed CPU time-slice available to a thread

• Is independent of host/native OS scheduling

• Can be set with sys.setcheckinterval(interval)

Python thread: internals

CPU operation I/O operation

Acquire GIL Release GIL

CPU operation

Acquire GIL

CPU bound thread

check checkcheck

GIL: Details and Bottleneck

• GIL is a conditional variable.

• What goes behind the scene?
– If GIL is unavailable, a thread goes to sleep and wait.

– At every ‘check’, a thread release the GIL, and tries to
re-acquire

• GIL release is accompanied with a request to host • GIL release is accompanied with a request to host
OS to signal all waiting threads

• Regular GIL unlock, thread signaling, wake-up,
and GIL relock are an expensive series of
operations

• Threads effectively run in the serial order

GIL: Battle in multi-cores

• Unlike single core, multiple cores allows the

host OS to schedule many threads

concurrently

• A thread that had just released the GIL, will • A thread that had just released the GIL, will

send a signal to waiting threads (through host

OS) and is ready to acquire the GIL again!

• This is a GIL contention among all threads

GIL: Battle continues…

• There is considerable time lag of
– Communication

– Signal-handling

– Thread wake-up

– and acquire GIL

• These factors along with cache-hotness of influence new • These factors along with cache-hotness of influence new
GIL owner which is usually the recent owner!

• In a [CPU,I/O]-bound mixed application, if the previous
owner happens to be a CPU-bound thread, I/O bound
thread starves!
– Since I/O bound threads are preferred by OS over CPU-bound

thread; Python presents a priority inversion on multi-core
systems.

New GIL: Python 3.2

• Tries to avoid GIL battle. How?

• Regular “check” are discontinued and replaced with a
time-out.

• Default time-out= 5ms

• Configurable through sys.setswitchinterval()

• For every time-out, current GIL holder, is forced to • For every time-out, current GIL holder, is forced to
release it, signals the waiting threads and, waits for a
signal from the new owner of GIL.
– A thread does not compete for GIL in succession

• A sleeping thread wakes up, acquires the GIL, and
signals the last owner.

• New GIL ensures that every thread gets a chance to run
(on a multi-core system)

Thread 1, core0

Thread 2, core1

Running Wait Suspended

Signals

thread2

GIL

released
waiting for

GIL

Signals

thread1Thread 2, core1

time

Suspended Wait Running

waiting

for GIL

GIL

acquired

Python v3.2: What’s good?

• More responsive threads

• Less overhead, lower lock contention

• No GIL battle

• All iz well☺• All iz well☺

New GIL: All is not well

• Convoy effect- observed in an application comprising
I/O-bound and CPU-bound threads

• A side-effect of an optimization in Python interpreter
– Release the GIL before executing an I/O service (read,

write, send, recv calls)

• When an I/O thread releases the GIL, another • When an I/O thread releases the GIL, another
‘runnable’ CPU bound thread can acquire it (remember
we are on multiple cores).

• It leaves the I/O thread waiting for another time-out
(5ms)!

• Once CPU thread releases GIL, I/O thread acquires and
release it again

• This cycle goes on => performance suffers �

Thread1, core0 (I/O)

Thread2, core1 (CPU)

Running Wait Suspended

Signals

thread2

GIL

released

waiting for

GIL

Signals

thread1

Running Wait

waiting

for GIL

Suspended Running Wait Suspended

time

Convoy effect

• Adversely impacts an I/O thread, if application has a

CPU thread(s)

• Voluntary relinquish of GIL proves fatal for I/O

thread’s performance

• We performed following tests with Python3.2:

• CPU thread spends less than few seconds

(<10s)!

I/O thread with CPU thread I/O thread without CPU thread

97 seconds 23 seconds

Convoy effect: Python v2?

• Convoy effect holds true for Python v2 also

• The smaller interval of ‘check’ saves the day!

– I/O threads don’t have to wait for a longer time (5

m) for CPU threads to finishm) for CPU threads to finish

– Should choose the setswitchinterval() wisely

• The effect is not so visible in Python v2.0

Comparing: Python 2.7 & Python 3.2

On Single Core On Dual Core

Python v3.2 Execution Time

Single Core 55 s

Dual Core 65 s

Python v2.7 Execution Time

Single Core 74s

Dual Core 116 s

0

20

40

60

80

v2.7 v3.2

Execution Time

Execution Time

On Single Core On Dual Core

0

50

100

150

v2.7 v3.2

Execution Time

Execution Time

Solving GIL problems

• Thought #1: reduce the waiting time interval
between threads.

– Caveat: increases the overhead of context
switching between threads

• Thought #2: implement GIL with C API • Thought #2: implement GIL with C API
extensions

– Caveat: Lot of rework involved

• Thought #3: allow running of I/O threads with
GIL if they are not blocking other threads.

– Caveat: to be analyzed

Jython: GIL

• Jython is free of GIL

• It can fully exploit multiple cores, as per our
experiments

• Experiments with Jython2.5• Experiments with Jython2.5

– Run with two CPU thread in tandem

• Experiment shows performance improvement on
multi-core system

Jython2.5 Execution time User time

Single core 38 s 0.652 s

Dual core 32 s 1.524 s

Conclusion

• Multi-core systems are becoming ubiquitous

• Python application should exploit this

abundant power

• Python inherently suffers the GIL limitation• Python inherently suffers the GIL limitation

• An intelligent awareness of Python interpreter

behavior is helpful in developing multi-

threaded applications

• Understand and use ☺

References

• Understanding the Python GIL, http://dabeaz.com/talks.html

• GlobalInterpreterLock,

http://wiki.python.org/moin/GlobalInterpreterLock

• Thread State and the Global Interpreter Lock,

http://docs.python.org/c-api/init.html#threadshttp://docs.python.org/c-api/init.html#threads

• Python v3.2.2 documentation, http://docs.python.org/py3k/

• Concurrency and Python, http://drdobbs.com/open-

source/206103078?pgno=3

Backup slides

Python: GIL

• A thread needs GIL before updating Python objects,
calling C/Python API functions

• Concurrency is emulated with regular ‘checks’ to switch
threads

• Applicable to only CPU bound thread• Applicable to only CPU bound thread

• A blocking I/O operation implies relinquishing the GIL
– ./Python2.7.5/Include/ceval.h

Py_BEGIN_ALLOW_THREADS

Do some blocking I/O operation ...

Py_END_ALLOW_THREADS

• Python file I/O extensively exercise this optimization

GIL: Internals

• The function Py_Initialize() creates the GIL

• A thread create request in Python is just a
pthread_create() call

• ../Python/ceval.c

• static PyThread_type_lock interpreter_lock = 0; • static PyThread_type_lock interpreter_lock = 0;
/* This is the GIL */

• o) thread_PyThread_start_new_thread: we call it
for "each" user defined thread.

• calls PyEval_InitThreads() ->
PyThread_acquire_lock() {}

GIL: in action

• Each CPU bound thread requires GIL

• ‘ticks count’ determine duration of GIL hold

• new_threadstate() -> tick_counter

• We keep a list of Python threads and each • We keep a list of Python threads and each

thread-state has its tick_counter value

• As soon as tick decrements to zero, the

thread release the GIL.

GIL: Details

thread_PyThread_start_new_thread() ->

void PyEval_InitThreads(void)

{

if (interpreter_lock)

return;return;

interpreter_lock = PyThread_allocate_lock();

PyThread_acquire_lock(interpreter_lock, 1);

main_thread = PyThread_get_thread_ident();

}

