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Summary

• Benefit of multi-threaded application grows 

with ubiquity of multi-core architecture that 

potentially can simultaneously run multiple 

threads of execution.

• Python supports multi-threaded applications • Python supports multi-threaded applications 

and developers are flocking to realize the 

assured gain of multiple cores with threaded 

applications.

• Unfortunately, Python has significant 

bottleneck for multi-threading.



Summary…

• Any thread in CPython interpreter requires a 

special lock (GIL) which results in serial, rather 

than parallel execution of multi-threaded 

applications, irrespective of cores availability 

and design techniques.and design techniques.

• This talk focuses on the problem, dissects the 

root cause and its implications.



A jaw dropping example!
• A simple python program – single function performing two 

operations for 10000000 iterations:

– Divides 2 random numbers from specified range

– Multiplies 2 random numbers from specified range

– Called as two different threads on:

• Single Core • Single Core 

• Dual Core  

22% dip in Execution Time Increased User Time by 2 secs.
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Python v2.7 Execution Time User Time

Single Core 55 s 1.108 s

Dual Core 67 s 3.071 s



Threads: Fundamentals

• Fundamental to a multi-tasking application

• Smallest possible, independent unit of execution

• Light weight processes (resource sharing 
including address space)including address space)

• Concurrent execution

� Uni-core processor: Single thread at a time; Time 
division multiplexing

� Multi-core processor: Threads run at the same time

• CPU bound and I/O bound



Python Threads

• Real system threads (POSIX/ Windows 
threads)

• Python VM has no intelligence of thread 
management (priorities, pre-emption, and so management (priorities, pre-emption, and so 
on)

• Native operative system supervises thread 
scheduling

• Python interpreter just does the per-thread 
bookkeeping.



Python threads: internals

• Only one thread can be active in Python interpreter

• Each ‘running’ thread requires exclusive access to data 
structures in Python interpreter

• Global interpreter lock (GIL) provides this exclusive 
synchronizationsynchronization

• This lock is necessary mainly because CPython's 
memory management is not thread-safe.

• Result

– A thread waits if another thread is holding the GIL, even on 
a multi-core processor! So, threads run sequentially, 
instead of parallel!



Python threads
• How do Python manages GIL?

– Python interpreter regularly performs a check

• A check is done after ‘n’ ticks.

checkTicks >0

– It maps to ‘n’ number of Python VM’s byte-code instructions

– A global counter; Ticks decrement as a thread executes

• As soon as ticks reach zero:

– the active thread releases and reacquires the GIL

– Signal handling (only in the main thread)

• Effectively, ticks dictate allowed CPU time-slice available to a thread

• Is independent of host/native OS scheduling

• Can be set with sys.setcheckinterval(interval)



Python thread: internals

CPU operation I/O operation

Acquire GIL Release GIL

CPU operation

Acquire GIL

CPU bound thread

check checkcheck



GIL: Details and Bottleneck

• GIL is a conditional variable.

• What goes behind the scene?
– If GIL is unavailable, a thread goes to sleep and wait.

– At every ‘check’, a thread release the GIL, and tries to 
re-acquire

• GIL release is accompanied with a request to host • GIL release is accompanied with a request to host 
OS to signal all waiting threads

• Regular GIL unlock, thread signaling, wake-up, 
and GIL relock are an expensive series of 
operations

• Threads effectively run in the serial order



GIL: Battle in multi-cores

• Unlike single core, multiple cores allows the 

host OS to schedule many threads 

concurrently

• A thread that had just released the GIL, will • A thread that had just released the GIL, will 

send a signal to waiting threads (through host 

OS) and is ready to acquire the GIL again!

• This is a GIL contention among all threads



GIL: Battle continues…

• There is considerable time lag of 
– Communication

– Signal-handling

– Thread wake-up

– and acquire GIL

• These factors along with cache-hotness of influence new • These factors along with cache-hotness of influence new 
GIL owner which is usually the recent owner!

• In a [CPU,I/O]-bound mixed application, if the previous 
owner happens to be a CPU-bound thread, I/O bound 
thread starves!
– Since I/O bound threads are preferred by OS over CPU-bound 

thread; Python presents a priority inversion on multi-core 
systems.



New GIL: Python 3.2

• Tries to avoid GIL battle. How?

• Regular “check” are discontinued and replaced with a 
time-out.

• Default time-out= 5ms

• Configurable through sys.setswitchinterval()

• For every time-out, current GIL holder, is forced to • For every time-out, current GIL holder, is forced to 
release it, signals the waiting threads and, waits for a 
signal from the new owner of GIL.
– A thread does not compete for GIL in succession

• A sleeping thread wakes up, acquires the GIL, and 
signals the last owner.

• New GIL ensures that every thread gets a chance to run 
(on a multi-core system)
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Python v3.2: What’s good?

• More responsive threads

• Less overhead, lower lock contention

• No GIL battle

• All iz well☺• All iz well☺



New GIL: All is not well

• Convoy effect- observed in an application comprising 
I/O-bound  and CPU-bound threads

• A side-effect of an optimization in Python interpreter
– Release the GIL before executing an I/O service (read, 

write, send, recv calls)

• When an I/O thread releases the GIL, another • When an I/O thread releases the GIL, another 
‘runnable’ CPU bound thread can acquire it (remember 
we are on multiple cores).

• It leaves the I/O thread waiting for another time-out 
(5ms)!

• Once CPU thread releases GIL, I/O thread acquires and 
release it again

• This cycle goes on => performance suffers �
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Convoy effect

• Adversely impacts an I/O thread, if application has a 

CPU thread(s)

• Voluntary relinquish of GIL proves fatal for I/O 

thread’s performance

• We performed following tests with Python3.2:

• CPU thread spends less than few seconds 

(<10s)!

I/O thread with CPU thread I/O thread without CPU thread

97 seconds 23 seconds



Convoy effect: Python v2?

• Convoy effect holds true for Python v2 also

• The smaller interval of ‘check’ saves the day!

– I/O threads don’t have to wait for a longer time (5 

m) for CPU threads to finishm) for CPU threads to finish

– Should choose the setswitchinterval() wisely

• The effect is not so visible in Python v2.0



Comparing: Python 2.7 & Python 3.2

On Single Core On Dual Core

Python v3.2 Execution Time

Single Core 55 s

Dual Core 65 s

Python v2.7 Execution Time

Single Core 74s

Dual Core 116 s
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Solving GIL problems

• Thought #1: reduce the waiting time interval 
between threads. 

– Caveat: increases the overhead of context 
switching between threads

• Thought #2: implement GIL with C API • Thought #2: implement GIL with C API 
extensions

– Caveat: Lot of rework involved

• Thought #3: allow running of I/O threads with 
GIL if they are not blocking other threads.

– Caveat: to be analyzed



Jython: GIL

• Jython is free of GIL

• It can fully exploit multiple cores, as per our 
experiments

• Experiments with Jython2.5• Experiments with Jython2.5

– Run with two CPU thread in tandem

• Experiment shows performance improvement on 
multi-core system

Jython2.5 Execution time User time

Single core 38 s 0.652 s

Dual core 32 s 1.524 s



Conclusion

• Multi-core systems are becoming ubiquitous

• Python application should exploit this 

abundant power

• Python inherently suffers the GIL limitation• Python inherently suffers the GIL limitation

• An intelligent awareness of Python interpreter 

behavior is helpful in developing multi-

threaded applications

• Understand and use ☺
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Python: GIL

• A thread needs GIL before updating Python objects, 
calling C/Python API functions

• Concurrency is emulated with regular ‘checks’ to switch 
threads

• Applicable to only CPU bound thread• Applicable to only CPU bound thread

• A blocking I/O operation implies relinquishing the GIL
– ./Python2.7.5/Include/ceval.h

Py_BEGIN_ALLOW_THREADS 

Do some blocking I/O operation ...

Py_END_ALLOW_THREADS

• Python file I/O extensively exercise this optimization



GIL: Internals

• The function Py_Initialize() creates the GIL

• A thread create request in Python is just a 
pthread_create() call

• ../Python/ceval.c

• static PyThread_type_lock interpreter_lock = 0; • static PyThread_type_lock interpreter_lock = 0; 
/* This is the GIL */

• o) thread_PyThread_start_new_thread: we call it 
for "each" user defined thread.

• calls PyEval_InitThreads() -> 
PyThread_acquire_lock() {}



GIL: in action

• Each CPU bound thread requires GIL

• ‘ticks count’ determine duration of GIL hold

• new_threadstate() -> tick_counter

• We keep a list of Python threads and each • We keep a list of Python threads and each 

thread-state has its tick_counter value

• As soon as tick decrements to zero, the 

thread release the GIL.



GIL: Details

thread_PyThread_start_new_thread() ->

void PyEval_InitThreads(void)

{   

if (interpreter_lock)

return;return;

interpreter_lock = PyThread_allocate_lock();

PyThread_acquire_lock(interpreter_lock, 1);

main_thread = PyThread_get_thread_ident();

}


