Python in the Real World: From Everyday Applications to Advanced Robotics

> Jivitesh Singh Dhaliwal PyCon India 2011

About Me

Electronics Enthusiast (To put it Mildly!)

- Final Year Electrical & Electronics Engineering Student-UIET, Panjab University, Chandigarh
- I love Python (Don't we all?)
- I also like C, C++
- Open Source Advocate

Overview

I'm going to talk about:

- Microcontrollers: What they are, and what they can do for us
- Interfacing them with Python
- Using Python to design Intelligent Systems
- Robotics and Python
- Scope of Python in Robotics and Embedded Systems

The Era of Processing

From the 8 bit 8051 to 32 bit Cortex M3 What has changed:

- Increased Processing Power
- Richer Instruction Sets
- (Much) Faster Speeds
- Increased Program Memory
- Low Power Consumption

What This Means

- Ability to Integrate Embedded Systems with High Level Languages
- Effective Designing of Intelligent Machines
- More Efficient Interfacing between Hardware and Software
- Much more proficient Hardware

If you can Imagine something, you can Create it...

Interfacing With Python

The Two Techniques:

- Serially:

» PySerial

»p14p (Python-On-A-Chip)

– Over the Internet:

» Python RPC over http (using Python's inbuilt Library)

The Power of Serial

>>> import serial
>>> serdev = '/dev/ttyACM0'
>>> s = serial.Serial(serdev)
>>> s.write("hello")
>>> s.close()

As simple as that!

Python-On-A-Chip

- p14p:
 - A flyweight python Virtual Machine
 - Python in a Billion Places!
- The Virtual Machine
 - Code
 - ipm> import mbed
 - ipm> pwm21 = mbed.PwmOut(21)
 - ipm> pwm21.period_us(1000)
 - ipm> pwm21.pulsewidth_us(500)

Over The Internet

An Example:

- >>> from mbedrpc2 import *
- >>> mbed = HTTPRPC("192.168.0.4")
- >> x = DigitalOut(mbed,LED1)
- >>> x.write(1)

import pylab as awesomeness

Assigning Meaning to Data Acquired

»Interactive plotting
»Ability to call mathematical functions

»Complex data management

The Potential of Scipy, Numpy and Matplotlib

• Plotting:

» 2D plotting of given signals

• Mathematical Manipulation of data :

» Linear Algebra Routines

» Matrix Operations

» Integration, Differentiation packages

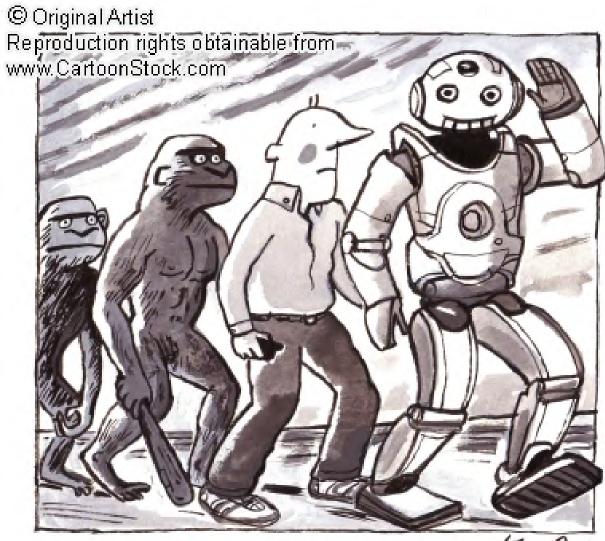
» Fourier Transformation

» Optimization

» Signal Processing

A Few Examples

- 1. Making LEDs Blink
- 2. Inputting data from sensors
- 3. Plotting of Data
- 4. Manipulation of data using scipy, numpy and matplotlib
- 5. Optimization of existing embedded systemssome examples


Summary So Far

We know now:

- What Microcontrollers are
- How to Interface them with Python
- How to use scipy, numpy and matplotlib to interpret data and take decisions

Robotics

The ultimate goal:

KenCox

What are Robots?

Defining Robots:

- "The technology developed to combine software, mechanical manipulators, sensors, controllers and computers to provide programmable automation."
- Essentially, cluster of multiple smaller embedded applications

Python and Robotics

- Python as the brain of a robot:
 - Complete in terms of Scientific tools available
 - Extremely Intuitive and Simple Syntax
- Microcontrollers as the External Interface to Python
 - Ability to Interface with Python
 - Ability to 'Perceive' External Data
 - Take Decisions based on Environment through Python

Making a Simple Robot using Python

(Demonstration)

Born With The Brains

How to Train Your Robot!

- Machine learning
 - The PyML Module
- Neural Networks
 - The PyBrain Module
- Support Vector Machines
 - PySVM Module

Implications

- Advanced Intelligent Robotics Systems
 - Support Vector Machine/ Neural Networks/ Other Pattern Recognition Modules available for python
 - Use of Prolog, Lisp within Python for logic reasoning
- Highly Optimized Results
 - Scipy, Numpy and Matplotlib Support
- Simpler Interface for the Programmer
 - The way you think is the way you write code!
 - The Pylab interface to know what's going on visually

Where Python Lags

- 1. Slower Execution Cycles
- 2. Requires more Program Memory
- 3. Modules such as scipy, etc. not ported onto the chip (memory constrictions)

How Python Makes Up

- Cython!
 - Same code, convertable to C!
 - Faster Execution Cycle
- Use in More advanced Microcontrollers:
 - Have greater memory space

Scope of Python In Embedded Applications

- Demand and not supply= Scope :)
- Untapped Market
- Need for more aggressive development

Thank You

Find me if you want to:

- Talk about Embedded Systems and/ or Robotics
- Talk about Python
- Or a Combination of the Two!

Jivitesh Singh Dhaliwal

jiviteshdhaliwal@gmail.com